留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication and optoelectronic characterization of suspended In2O3 nanowire transistors

JIANG Yi-yang CHEN Yan WANG Xu-dong ZHAO Dong-yang LIN Tie SHEN Hong MENG Xiang-jian WANG Lin WANG Jian-lu

姜亦杨, 陈艳, 王旭东, 赵东洋, 林铁, 沈宏, 孟祥建, 汪琳, 王建禄. 悬空氧化铟纳米线晶体管制备与光电性能表征[J]. 中国光学(中英文), 2021, 14(1): 196-205. doi: 10.37188/CO.2020-0062
引用本文: 姜亦杨, 陈艳, 王旭东, 赵东洋, 林铁, 沈宏, 孟祥建, 汪琳, 王建禄. 悬空氧化铟纳米线晶体管制备与光电性能表征[J]. 中国光学(中英文), 2021, 14(1): 196-205. doi: 10.37188/CO.2020-0062
JIANG Yi-yang, CHEN Yan, WANG Xu-dong, ZHAO Dong-yang, LIN Tie, SHEN Hong, MENG Xiang-jian, WANG Lin, WANG Jian-lu. Fabrication and optoelectronic characterization of suspended In2O3 nanowire transistors[J]. Chinese Optics, 2021, 14(1): 196-205. doi: 10.37188/CO.2020-0062
Citation: JIANG Yi-yang, CHEN Yan, WANG Xu-dong, ZHAO Dong-yang, LIN Tie, SHEN Hong, MENG Xiang-jian, WANG Lin, WANG Jian-lu. Fabrication and optoelectronic characterization of suspended In2O3 nanowire transistors[J]. Chinese Optics, 2021, 14(1): 196-205. doi: 10.37188/CO.2020-0062

悬空氧化铟纳米线晶体管制备与光电性能表征

详细信息
  • 中图分类号: O472+.8; O472+.4

Fabrication and optoelectronic characterization of suspended In2O3 nanowire transistors

doi: 10.37188/CO.2020-0062
Funds: Supported by National Natural Science Foundation of China (No. 61521001, No. 61574151); Program on Key Basic Research Project (No. 2016YFA0203900, No. 2016YFB0400801); Program of the Chinese Academy of Science (No. QYZDB-SSW-JCS016, No. QYZDY-SSW-JSC042)
More Information
    Author Bio:

    JIANG Yi-yang (1995—), Master, School of Materials Science & Engineering, Shanghai University. His place of birth is Yangzhou, Jiangsu. His research interests are on nanowire-based photodetectors. E-mail: Jiangyiyang95@163.com

    CHEN Yan (1991—), Dr, Shanghai Institute of Technical Physics, Microelectronics and Solid-state Electronics, Chinese Academy of Sciences. Place of birth is Nantong, Jiangsu. Her research interests are on optoelectronics based on low-dimensional materials and their heterostructures. E-mail: cherry16@mail.sitp.ac.cn

    WANG Jian-lu (1981—), Dr, Professor, Shanghai Institute of Technical Physics, Microelectronics and Solid-state Electronics, Chinese Academy of Sciences. His place of birth is Pingyao, Shanxi. His research interests currently focus on ferroelectrics, 2D materials and their related electronic and optoelectronic devices. E-mail: jlwang@sitp.ac.cn

    Corresponding author: cherry16@mail.sitp.ac.cnjlwang@sitp.ac.cn
  • 摘要: 一维(1D)半导体纳米线在纳米电子学和纳米光子学中表现出色。然而,纳米线晶体管的电特性对纳米线与衬底之间的相互作用非常敏感,而优化器件结构可以改善纳米线晶体管的电学和光电检测性能。本文报道了通过一步式光刻技术制造的悬浮式In2O3纳米线晶体管,显示出54.6 cm2V−1s−1的高迁移率和241.5 mVdec−1的低亚阈值摆幅。作为紫外光电探测器,光电晶体管显示出极低的暗电流(~10−13 A)和高响应度1.6×105 A•W−1。悬浮晶体管的沟道材料的这种简单而有效的制备方法可广泛用于制造高性能微纳米器件。

     

  • Figure 1.  Design and characterization of the single In2O3 nanowire device. (a) TEM of a single In2O3 nanowire. (b) Dark-field microscopy image of an In2O3 nanowire FET. (c) Three-dimensional schematic view of a suspended single In2O3 nanowire photodetector. (d) SEM of the suspended single In2O3 nanowire photodetector

    Figure 2.  Fabrication process of suspended nanowire devices

    Figure 3.  Electric performance of the single In2O3 nanowire devices under dark conditions. (a) I-V curves of the nanowire-based photodetector in different atmospheres. (b) Output characteristics of the nanowire-based photodetector under different gate voltages. Orange arrow represent that Vg is from 20 V to −50 V with −10 V steps. Transfer curve switch at different source-drain biases ranging from 0.1 V to 1 V (c) in the air and (d) in vacuum state. Black arrows represent the scanning direction of gate voltage.

    Figure 4.  Photoresponse properties of the single In2O3 nanowire devices. (a) Ids-Vds characteristics of the photodetector in the dark and different wavelengths of light. (b) Photocurrent and responsivity of the photodetector under different wavelengths of light. (c) Ids-Vds characteristics of the photodetector in the dark and different intensities of light (450 nm). (d) Photoresponsivity and detectivity of the photodetector under the different intensities of light (450 nm).

    Figure 5.  Time-response characterizations of the In2O3 single-nanowire photodetector. (a) Photocurrent response of the device, where the laser light is switched on/off at an interval of 20 s (520 nm, 2.6 mW·cm−2 at Vds = 1 V. (b) Enlargement of the curve in the 53~72 s range outlined in (a). (c) A single UV photocurrent response of the device (375 nm, 1.6 mW·cm−2). (d) Time-resolved photoresponse of the device showing the rise and fall time of the photocurrent at Vds = 0.1 V.

  • [1] HEO Y W, VARADARAJAN V, KAUFMAN M, et al. Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy[J]. Applied Physics Letters, 2002, 81(16): 3046-3048. doi: 10.1063/1.1512829
    [2] JIANG W, WANG X D, CHEN Y, et al. Large-area high quality PtSe2 thin film with versatile polarity[J]. InfoMat, 2019, 1(2): 260-267.
    [3] YAN R X, GARGAS D, YANG P D. Nanowire photonics[J]. Nature Photonics, 2009, 3(10): 569-576. doi: 10.1038/nphoton.2009.184
    [4] WU G J, TIAN B B, LIU L, et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains[J]. Nature Electronics, 2020, 3(1): 43-50. doi: 10.1038/s41928-019-0350-y
    [5] APPENZELLER J, KNOCH J, BJORK M T, et al. Toward nanowire electronics[J]. IEEE Transactions on Electron Devices, 2008, 55(11): 2827-2845. doi: 10.1109/TED.2008.2008011
    [6] HONG W K, SOHN J I, HWANG D K, et al. Tunable electronic transport characteristics of surface-architecture-controlled ZnO nanowire field effect transistors[J]. Nano Letters, 2008, 8(3): 950-956. doi: 10.1021/nl0731116
    [7] CUI Y, WEI Q Q, PARK H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science, 2001, 293(5533): 1289-1292. doi: 10.1126/science.1062711
    [8] ZHENG G F, PATOLSKY F, CUI Y, et al. Multiplexed electrical detection of cancer markers with nanowire sensor arrays[J]. Nature Biotechnology, 2005, 23(10): 1294-1301. doi: 10.1038/nbt1138
    [9] HUANG M H, MAO S, FEICK H, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1899. doi: 10.1126/science.1060367
    [10] WAN Q, LI Q H, CHEN Y J, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors[J]. Applied Physics Letters, 2004, 84(18): 3654-3656. doi: 10.1063/1.1738932
    [11] GOMES U P, ERCOLANI D, ZANNIER V, et al. Controlling the diameter distribution and density of InAs nanowires grown by Au-assisted methods[J]. Semiconductor Science and Technology, 2015, 30(11): 115012. doi: 10.1088/0268-1242/30/11/115012
    [12] ROCCI M, DEMONTIS V, PRETE D, et al. Suspended InAs nanowire-based devices for thermal conductivity measurement using the 3ω method[J]. Journal of Materials Engineering and Performance, 2018, 27(12): 6299-6305. doi: 10.1007/s11665-018-3715-x
    [13] SU M, ZOU X M, GONG Y N, et al. Sub-kT/q switching in In2O3 nanowire negative capacitance field-effect transistors[J]. Nanoscale, 2018, 10(40): 19131-19139. doi: 10.1039/C8NR06163G
    [14] KONG Y C, YU D P, ZHANG B, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J]. Applied Physics Letters, 2001, 78(4): 407-409. doi: 10.1063/1.1342050
    [15] YANG M, PANG G SH, JIANG L F, et al. Hydrothermal synthesis of one-dimensional zinc oxides with different precursors[J]. Nanotechnology, 2006, 17(1): 206-212. doi: 10.1088/0957-4484/17/1/034
    [16] ZOU X M, LIU X Q, WANG C L, et al. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors[J]. ACS Nano, 2013, 7(1): 804-810. doi: 10.1021/nn305289w
    [17] LIU Z W, ONG C, YU T, et al. Catalyst-free pulsed-laser-deposited ZnO nanorods and their room-temperature photoluminescence properties[J]. Applied Physics Letters, 2006, 88(5): 053110. doi: 10.1063/1.2168675
    [18] ZHANG D H, LI C, HAN S, et al. Electronic transport studies of single-crystalline In2O3 nanowires[J]. Applied Physics Letters, 2003, 82(1): 112-114. doi: 10.1063/1.1534938
    [19] MENG M, WU X L, JI X L, et al. Ultrahigh quantum efficiency photodetector and ultrafast reversible surface wettability transition of square In2O3 nanowires[J]. Nano Research, 2017, 10(8): 2772-2781. doi: 10.1007/s12274-017-1481-y
    [20] SHAO D L, QIN L Q, SAWYER S. Near ultraviolet photodetector fabricated from polyvinyl-alcohol coated In2O3 nanoparticles[J]. Applied Surface Science, 2012, 261: 123-127. doi: 10.1016/j.apsusc.2012.07.111
    [21] ZHU H Y, WANG Y, XIAO J, et al. Observation of piezoelectricity in free-standing monolayer MoS2[J]. Nature Nanotechnology, 2015, 10(2): 151-155. doi: 10.1038/nnano.2014.309
    [22] SU M, YANG ZH Y, LIAO L, et al. Side-Gated In2O3 nanowire ferroelectric FETs for high-performance nonvolatile memory applications[J]. Advanced Science, 2016, 3(9): 1600078. doi: 10.1002/advs.201600078
    [23] KONSTANTATOS G, SARGENT E H. Nanostructured materials for photon detection[J]. Nature Nanotechnology, 2010, 5(6): 391-400. doi: 10.1038/nnano.2010.78
    [24] ZHENG D SH, WANG J L, HU W D, et al. When nanowires meet ultrahigh ferroelectric field–high-performance full-depleted nanowire photodetectors[J]. Nano Letters, 2016, 16(4): 2548-2555. doi: 10.1021/acs.nanolett.6b00104
    [25] GUO N, HU W D, LIAO L, et al. Anomalous and highly efficient InAs nanowire phototransistors based on majority carrier transport at room temperature[J]. Advanced Materials, 2014, 26(48): 8203-8209. doi: 10.1002/adma.201403664
    [26] SOCI C, ZHANG A, XIANG B, et al. ZnO nanowire UV photodetectors with high internal gain[J]. Nano Letters, 2007, 7(4): 1003-1009. doi: 10.1021/nl070111x
    [27] GONG X, TONG M H, XIA Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667. doi: 10.1126/science.1176706
    [28] DAS K, MUKHERJEE S, MANNA S, et al. Single Si nanowire (diameter ≤ 100 nm) based polarization sensitive near-infrared photodetector with ultra-high responsivity[J]. Nanoscale, 2014, 6(19): 11232-11239. doi: 10.1039/C4NR03170A
    [29] LU J F, XU C X, DAI J, et al. Improved UV photoresponse of ZnO nanorod arrays by resonant coupling with surface plasmons of Al nanoparticles[J]. Nanoscale, 2015, 7(8): 3396-3403. doi: 10.1039/C4NR07114J
    [30] LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501. doi: 10.1038/nnano.2013.100
    [31] HUANG S Y, OU G, CHENG J, et al. Ultrasensitive visible light photoresponse and electrical transportation properties of nonstoichiometric indium oxide nanowire arrays by electrospinning[J]. Journal of Materials Chemistry C, 2013, 1(39): 6463-6470. doi: 10.1039/c3tc31051e
  • 加载中
图(5)
计量
  • 文章访问数:  1589
  • HTML全文浏览量:  448
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-14
  • 修回日期:  2020-05-03
  • 网络出版日期:  2020-12-29
  • 刊出日期:  2021-01-25

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!