留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于近红外超连续激光光谱的水稻种子活力无损分级检测研究

金文玲 曹乃亮 朱明东 陈伟 张佩光 赵庆磊 梁静秋 余应弘 吕金光 阚瑞峰

金文玲, 曹乃亮, 朱明东, 陈伟, 张佩光, 赵庆磊, 梁静秋, 余应弘, 吕金光, 阚瑞峰. 基于近红外超连续激光光谱的水稻种子活力无损分级检测研究[J]. 中国光学. doi: 10.37188/CO.2020-0027
引用本文: 金文玲, 曹乃亮, 朱明东, 陈伟, 张佩光, 赵庆磊, 梁静秋, 余应弘, 吕金光, 阚瑞峰. 基于近红外超连续激光光谱的水稻种子活力无损分级检测研究[J]. 中国光学. doi: 10.37188/CO.2020-0027
JIN Wen-ling, CAO Nai-liang, ZHU Ming-dong, CHEN Wei, ZHANG Pei-guang, ZHAO Qing-lei, LIANG Jing-qiu, YU Ying-hong, LV Jin-guang, KAN Rui-feng. Nondestructive grading test of rice seed activity using near infrared super-continuum laser spectrum[J]. Chinese Optics. doi: 10.37188/CO.2020-0027
Citation: JIN Wen-ling, CAO Nai-liang, ZHU Ming-dong, CHEN Wei, ZHANG Pei-guang, ZHAO Qing-lei, LIANG Jing-qiu, YU Ying-hong, LV Jin-guang, KAN Rui-feng. Nondestructive grading test of rice seed activity using near infrared super-continuum laser spectrum[J]. Chinese Optics. doi: 10.37188/CO.2020-0027

基于近红外超连续激光光谱的水稻种子活力无损分级检测研究

doi: 10.37188/CO.2020-0027
基金项目: 湖南省农业科技创新资金项目(No. 2018NK1020);国家自然科学基金(No. 61627819,No. 61805239,No. 61727818);吉林省科技发展计划(No. 20190303063SF,No. 20180201024GX,No. 20150520101JH);中国科学院青年创新促进会基金(No. 2018254)
详细信息
    作者简介:

    金文玲(1994—),女,辽宁大连人,硕士研究生,2017年于沈阳理工大学获得学士学位,主要从事光学与光谱学检测系统设计及方法研究。E-mail:jinwenling17@mails.ucas.ac.cn

    吕金光(1984—)男,吉林蛟河人,博士,副研究员,硕士生导师,2008年于吉林大学物理学院获得学士学位,2013年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事微小光学系统设计与光学信息处理方面的研究。E-mail:jinguanglv@163.com

    阚瑞峰(1977—),男,辽宁锦州人,研究员,博士生导师,主要从事激光光谱检测方法及其在环境污染、生产安全、航空航天流场诊断、深海溶解气体检测等方面应用的研究。E-mail:rfkan@ciomp.ac.cn

    通讯作者: 吕金光,jinguanglv@163.com阚瑞峰,rfkan@ciomp.ac.cn
  • 中图分类号: O433.1

Nondestructive grading test of rice seed activity using near infrared super-continuum laser spectrum

Funds: Supported by Hunan Agricultural Science and Technology Innovation Fund Project (No. 2018NK1020); National Natural Science Foundation of China (No. 61627819, No.61805239, No. 61727818); Jilin Province Science and Technology Development Plan (No. 20190303063SF, No. 20180201024GX, No.20150520101JH); Foundation of Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2018254)
More Information
  • 摘要: 针对目前农业种植选种应用对于带稃壳水稻种子活力分级检测的迫切需求,以及现有通用的糙米检测技术存在的问题,本文提出一种基于近红外超连续激光光谱的水稻种子活力透射光谱检测方法。首先,设计了种子活力近红外吸收光谱检测系统,测量了3种不同年份的带稃壳的水稻种子的近红外吸收光谱,结果显示,水稻种子的活力梯度与近红外吸收光谱的特征吸收峰值相关。然后,采用归一化、二阶导数校正法和正交信号校正相结合优化了种子光谱的预处理算法。最后,建立主成分分析(PCA)模型,对光谱进行降维,确定最佳主成分数目,应用偏最小二乘判别分析(PLS-DA)建立了水稻种子活力分析鉴别模型。分析结果表明,本文设计的透射式吸收光谱检测系统结合PLS-DA判别模型可对不同活力的水稻种子进行分类,校正集和验证集的准确率分别为94.44%和95.92%,筛选后水稻种子的发芽率可达97.17%。研究结果表明,本文提出的基于近红外光谱信息实现水稻种子活力无损分级的方法可行,且具有较高的预测精度。
  • 图  1  (a)反射式光谱检测方法与(b)透射式光谱检测方法测量原理示意图

    Figure  1.  Schematic diagram of (a) reflection type spectral detection method, and (b) transmission type spectral detection method

    图  2  水稻种子活力的透射光谱检测系统

    Figure  2.  Transmission spectrum detection system for rice seed vigor

    图  3  水稻种子的近红外吸收光谱图。(a) 不同活力的水稻种子近红外光谱平均曲线;(b) 高活力水稻种子近红外吸收光谱

    Figure  3.  Near-infrared absorption spectrum of rice seeds. (a) The average curves of transmission spectra of rice seeds with different vigors. (b) Near-infrared absorption spectrum of high vigor seeds

    图  4  二阶导数处理后的光谱信息

    Figure  4.  The absorption spectrum of rice seed after second derivative processing

    图  5  两种预处理方法结果对比。(a) 正交信号校正处理后的光谱;(b) 标准正态变量校正后的光谱

    Figure  5.  Comparison of absorption spectrum of rice seed processed by two pretreatment methods. (a) Orthogonal signal correction; (b) standard normal variate correction

    图  6  PLS-DA模型对2018年 (a)、2017年 (b)、2016年 (c)及随机混合(d)的水稻种子活力判别结果

    Figure  6.  Evaluation results of vigor of the rice seed in 2018 (a)、2017 (b)、2016 (c) and random mixing (d) determined by PLS-DA model

    表  1  筛选前水稻种子的活力情况

    Table  1.   The seed vigor parameters of rice seeds before selecting

    年份活力高活力低不发芽发芽率
    2018192524484.72%
    2017154716378.13%
    2016106938969.09%
    随机混合133847175.351%
    总计585300267——
    下载: 导出CSV

    表  2  不同预处理方法对样品的活力鉴别情况

    Table  2.   The vitality identification results of samples by different pretreatment methods

    预处理方法光谱范围/nm主成分数准确率/%
    未处理1100~2100568.19
    MSC1100~2100375.63
    SNV1100~2100371.78
    OSC1100~2100377.05
    归一化+MSC1100~2100370.33
    SD+MSC1100~2100377.91
    SD+SNV1100~2100379.85
    SD+OSC1100~2100378.57
    归一化+SD+MSC1100~2100383.97
    归一化+SD+SNV1100~2100388.06
    归一化+SD+OSC1100~2100394.13
    归一化+SD+OSC1100~2100282.85
    归一化+FD+OSC1100~2100389.39
    下载: 导出CSV

    表  3  主成分数与模型贡献率

    Table  3.   Number of principal components and model contribution rate

    主成分数123456
    模型准确率/%55.382.995.994.294.192.7
    累积贡献率/%62.485.793.596.198.299.6
    下载: 导出CSV

    表  4  PLS-DA模型判别准确率及筛选后种子发芽率

    Table  4.   Total accuracy of PLS-DA model and seed germination of rice seeds after screening

    年份校正集准确率/%验证集准确率/%筛选后发芽率/%
    201894.4495.9297.17
    201793.9894.6996.52
    201691.5392.3795.06
    随机混合92.7493.1696.07
    下载: 导出CSV
  • [1] 杨振发, 肖航, 张雷, 等. 基于近红外光谱的水泥生料氧化物含量快速测定方法研究[J]. 分析化学,2020,48(2):275-281.

    YANG ZH F, XIAO H, ZHANG L, et al. Rapid determination of oxides content in cement raw meal based on near infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2020, 48(2): 275-281. (in Chinese)
    [2] AMBROSE A, LOHUMI S, LEE W H, et al. Comparative nondestructive measurement of corn seed viability using fourier transform near-infrared (FT-NIR) and raman spectroscopy[J]. Sensors and Actuators B:Chemical, 2015, 224: 500-506.
    [3] 李茂刚, 闫春华, 薛佳, 等. 近红外光谱结合小波变换—随机森林法快速定量分析甲醇汽油中甲醇含量[J]. 分析化学,2019,47(12):1995-2003.

    LI M G, YAN CH H, XUE J, et al. Rapid quantitative analysis of methanol content in methanol gasoline by near infrared spectroscopy coupled with wavelet transform-random forest[J]. Chinese Journal of Analytical Chemistry, 2019, 47(12): 1995-2003. (in Chinese)
    [4] 何龙生. 水稻种子活力测定方法的初步研究[D]. 杭州: 浙江农林大学, 2018: 1-2.

    HE L SH. The preliminary study on methods for determination of rice seed vigor[D]. Hangzhou: Zhejiang A&F University, 2018. (in Chinese)
    [5] 王岳含. 我国种子质量可追溯系统研究[D]. 北京: 中国农业科学院, 2016.

    WANG Y H. Seed quality tracing system of china research[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)
    [6] 牟致远. 小麦种子活力及其遗传分析[J]. 西南农业大学学报,1987,9(4):421-425.

    MU ZH Y. Seedling vigor and genetic analysis in wheat varieties[J]. Journal of Southwest Agricultural University, 1987, 9(4): 421-425. (in Chinese)
    [7] 王青峰, 宫庆友, 沈凌云, 等. 超甜玉米种子活力研究[J]. 种子,2007,26(6):4-7. doi:  10.3969/j.issn.1001-4705.2007.06.002

    WANG Q F, GONG Q Y, SHEN L Y, et al. Study of combining ability of seed vigor in super sweet corn[J]. Seed, 2007, 26(6): 4-7. (in Chinese) doi:  10.3969/j.issn.1001-4705.2007.06.002
    [8] 朱银, 颜伟, 杨欣, 等. 基于近红外光谱的小麦种子发芽率测试[J]. 江苏农业科学,2015,43(12):111-113.

    ZHU Y, YAN W, YANG X, et al. Test of germination rate of wheat seeds based on near infrared spectroscopy[J]. Jiangsu Agricultural Sciences, 2015, 43(12): 111-113. (in Chinese)
    [9] 李欢欢, 卢伟, 杜昌文, 等. 基于光声光谱结合LS-SVR的稻种活力快速无损检测方法研究[J]. 中国激光,2015,42(11):1115003. doi:  10.3788/CJL201542.1115003

    LI H H, LU W, DU CH W, et al. Study on rapid and non-destructive detection of rice seed vigor based on photoacoustic spectroscopy combined with LS-SVR[J]. Chinese Journal of Lasers, 2015, 42(11): 1115003. (in Chinese) doi:  10.3788/CJL201542.1115003
    [10] 李美凌, 邓飞, 刘颖, 等. 基于高光谱图像的水稻种子活力检测技术研究[J]. 浙江农业学报,2015,27(1):1-6. doi:  10.3969/j.issn.1004-1524.2015.01.01

    LI M L, DENG F, LIU Y, et al. Study on detection technology of rice seed vigor based on hyperspectral image[J]. Acta Agriculturae Zhejiangensis, 2015, 27(1): 1-6. (in Chinese) doi:  10.3969/j.issn.1004-1524.2015.01.01
    [11] 宋乐, 王琦, 王纯阳, 等. 基于近红外光谱的单粒水稻种子活力快速无损检测[J]. 粮食储藏,2015,44(1):20-23. doi:  10.3969/j.issn.1000-6958.2015.01.005

    SONG L, WANG Q, WANG CH Y, et al. Qualitative analysis of single rice seed vigor using near infrared reflectance spectroscopy[J]. Grain Storage, 2015, 44(1): 20-23. (in Chinese) doi:  10.3969/j.issn.1000-6958.2015.01.005
    [12] ZHOU X B, ZHAO J W, POVEY M J W, et al. Variables selection methods in near-infrared spectroscopy[J]. Analytica Chimica Acta, 2010, 667(1-2): 14-32. doi:  10.1016/j.aca.2010.03.048
    [13] 史永刚, 栗斌, 田高友, 等. 化学计量学方法及MATLAB实现[M]. 北京: 中国石化出版社, 2010.

    SHI Y G, LI B, TIAN G Y, et al.. Chemometrics Method and MATLAB Implementation[M]. Beijing: China Petrochemical Press, 2010. (in Chinese)
    [14] 郭帅, 苏杭, 黄星灿, 等. 光学无创血糖浓度检测方法的研究进展[J]. 中国光学,2019,12(6):1235-1248. doi:  10.3788/co.20191206.1235

    GUO SH, SU H, HUANG X C, et al. Research progress in optical methods for noninvasive blood glucose detection[J]. Chinese Optics, 2019, 12(6): 1235-1248. (in Chinese) doi:  10.3788/co.20191206.1235
    [15] 王纯阳. 基于近红外光谱的单籽粒水稻种子品质检测的方法研究[D]. 合肥: 中国科学技术大学, 2017.

    WANG CH Y. The nondestructive quality analysis of single rice seed using near infrared spectroscopy[D]. Hefei: University of Science and Technology of China. (in Chinese)
    [16] 高升, 王巧华, 李庆旭, 等. 基于近红外光谱的红提维生素C含量、糖度及总酸含量无损检测方法[J]. 分析化学,2019,47(6):941-949.

    GAO SH, WANG Q H, LI Q X, et al. Non-destructive detection of vitamin C, sugar content and total acidity of red globe grape based on near-infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2019, 47(6): 941-949. (in Chinese)
    [17] 付丹丹, 王巧华, 高升, 等. 不同品种鸡蛋贮期S—卵白蛋白含量分析及其可见/近红外光谱无损检测模型研究[J]. 分析化学,2020,48(2):289-297.

    FU D D, WANG Q H, GAO SH, et al. Analysis of S-Ovalbumin content of different varieties of eggs during storage and its nondestructive testing model by visible-near infrared spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2020, 48(2): 289-297. (in Chinese)
    [18] 刘宁武, 许林广, 周胜, 等. 量子级联激光光谱在土壤生态系统中的应用[J]. 光学学报,2019,39(11):1130001. doi:  10.3788/AOS201939.1130001

    LIU N W, XU G L, ZHOU SH, et al. Application of quantum-cascade laser spectroscopy to soil ecosystems[J]. Acta Optica Sinica, 2019, 39(11): 1130001. (in Chinese) doi:  10.3788/AOS201939.1130001
    [19] 谢臣瑜, 翟文超, 李健军, 等. 超连续激光单色仪系统级光谱响应度定标比对验证[J]. 红外与激光工程,2020,49(2):0205005. doi:  10.3788/IRLA202049.0205005

    XIE CH Y, ZHAI W CH, LI J J, et al. System-level spectral responsivity calibration comparison and validation of supercontinuum laser and monochromator[J]. Infrared and Laser Engineering, 2020, 49(2): 0205005. (in Chinese) doi:  10.3788/IRLA202049.0205005
    [20] 曹栋栋, 阮晓丽, 詹艳, 等. 杂交水稻种子不同活力测定方法与其田间成苗率的相关性[J]. 浙江农业学报,2014,26(5):1145-1150. doi:  10.3969/j.issn.1004-1524.2014.05.01

    CAO D D, RUAN X L, ZHAN Y, et al. Relativity analysis between seedling percentage in field and different seed vigor testing methods of hybrid rice seeds[J]. Acta Agriculturae Zhejiangensis, 2014, 26(5): 1145-1150. (in Chinese) doi:  10.3969/j.issn.1004-1524.2014.05.01
    [21] 刘燕德, 叶灵玉, 孙旭东, 等. 基于光谱指数的蜜橘成熟度评价模型研究[J]. 中国光学,2018,11(1):83-91. doi:  10.3788/co.20181101.0083

    LIU Y D, YE L Y, SUN X D, et al. Maturity evaluation model of tangerine based on spectral index[J]. Chinese Optics, 2018, 11(1): 83-91. (in Chinese) doi:  10.3788/co.20181101.0083
    [22] 董盈红. 油菜籽的傅里叶变换红外光谱鉴别[J]. 保山学院学报,2018,37(2):38-41. doi:  10.3969/j.issn.1674-9340.2018.02.011

    DONG Y H. Identification of rapeseed by fourier transform infrared spectroscopy[J]. Journal of Baoshan Teachers College, 2018, 37(2): 38-41. (in Chinese) doi:  10.3969/j.issn.1674-9340.2018.02.011
    [23] 褚小立. 化学计量学方法与分子光谱分析技术[M]. 北京: 化学工业出版社, 2011.

    CHU X L. Molecular Spectroscopy Analytical Technology Combined with Chemometrics and Its Applications[M]. Beijing: Chemical Industry Press, 2011. (in Chinese)
    [24] 王昕, 吕世龙, 李岩, 等. 基于基线漂移模型的气体光谱自动基线校正[J]. 光谱学与光谱分析,2018,38(12):3946-3951.

    WANG X, LV SH L, LI Y, et al. Automatic baseline correction of gas spectra based on baseline drift model[J]. Spectroscopy and Spectral Analysis, 2018, 38(12): 3946-3951. (in Chinese)
    [25] 王凡, 李永玉, 彭彦昆, 等. 基于可见/近红外透射光谱的番茄红素含量无损检测方法研究[J]. 分析化学,2018,46(9):1424-1431. doi:  10.11895/j.issn.0253-3820.181164

    WANG F, LI Y Y, PENG Y K, et al. Nondestructive determination of lycopene content based on visible/near infrared transmission spectrum[J]. Chinese Journal of Analytical Chemistry, 2018, 46(9): 1424-1431. (in Chinese) doi:  10.11895/j.issn.0253-3820.181164
    [26] 高升, 王巧华, 付丹丹, 等. 红提糖度和硬度的高光谱成像无损检测[J]. 光学学报,2019,39(10):355-364.

    GAO SH, WANG Q H, FU D D, et al. Nondestructive detection of sugar content and firmness of red globe grape by hyperspectral imaging[J]. Acta Optica Sinica, 2019, 39(10): 355-364. (in Chinese)
    [27] 范雪婷, 朱明东, 杨晨光, 等. 利用近红外吸收光谱对水稻种子活力的判别方法[J]. 杂交水稻,2019,34(4):62-67.

    FAN X T, ZHU M D, YANG CH G, et al. Assessment of rice seed vigor using near infrared spectroscopy[J]. Hybrid Rice, 2019, 34(4): 62-67. (in Chinese)
    [28] SAMPAIO P S, SOARES A, CASTANHO A, et al. Optimization of rice amylose determination by NIR-spectroscopy using PLS chemometrics algorithms[J]. Food Chemistry, 2018, 242: 196-204. doi:  10.1016/j.foodchem.2017.09.058
    [29] LIU D L, WU Y X, GAO Z M, et al. Comparative non-destructive classification of partial waxy wheats using near-infrared and raman spectroscopy[J]. Crop &Pasture Science, 2019, 70(5): 437-441.
  • [1] 汤伟, 刘立生, 刘扬, 邵俊峰, 郭劲.  激光空间合束主镜优化设计与分析 . 中国光学, doi: 10.3788/CO.2019-0161
    [2] 刘燕德, 徐海, 孙旭东, 姜小刚, 饶宇, 徐佳, 王军政.  不同产地苹果糖度可见近红外光谱在线检测 . 中国光学, doi: 10.3788/CO.2019-0128
    [3] 孙桂芳, 王雅丽, 孟现柱, 史强, 杨冰.  Na5[B2P3O13]晶体的紫外-远红外光谱分析 . 中国光学, doi: 10.3788/CO.20191205.1118
    [4] 李昂泽, 王宪双, 徐向君, 何雅格, 郭帅,&