留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深紫外光刻光学薄膜

张立超 才玺坤 时光

张立超, 才玺坤, 时光. 深紫外光刻光学薄膜[J]. 中国光学(中英文), 2015, 8(2): 169-181. doi: 10.3788/CO.20150802.0169
引用本文: 张立超, 才玺坤, 时光. 深紫外光刻光学薄膜[J]. 中国光学(中英文), 2015, 8(2): 169-181. doi: 10.3788/CO.20150802.0169
ZHANG Li-chao, CAI Xi-kun, SHI Guang. Optical coatings for DUV Lithography[J]. Chinese Optics, 2015, 8(2): 169-181. doi: 10.3788/CO.20150802.0169
Citation: ZHANG Li-chao, CAI Xi-kun, SHI Guang. Optical coatings for DUV Lithography[J]. Chinese Optics, 2015, 8(2): 169-181. doi: 10.3788/CO.20150802.0169

深紫外光刻光学薄膜

基金项目: 国家科技重大专项资助项目(No.2009ZX2005)
详细信息
    通讯作者:

    张立超 (1979—),男,吉林省吉林市人,博士,研究员,2000年、2003年于吉林大学分别获得学士、硕士学位,2007 于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事光学薄膜技术方面的研究。E-mail: zhanglc@sklao.ac.cn

  • 中图分类号: O484

Optical coatings for DUV Lithography

  • 摘要: 深紫外波段是目前常规光学技术的短波极限,随着波长的缩短,深紫外光学薄膜开发面临一系列特殊的问题;而对于深紫外光刻系统这样的典型超精密光学系统来说,对薄膜光学元件提出的要求则更加苛刻。本文主要介绍了适用于深紫外光刻系统的薄膜材料及膜系设计;对薄膜沉积工艺、元件面形保障、大口径曲面均匀性等超精密光学元件的指标保障关键问题进行了讨论;对环境污染与激光辐照特性等光刻系统中薄膜元件环境适应性的重要因素进行了深入分析。以上分析为突破高性能深紫外光刻光学薄膜开发瓶颈,更好地满足深紫外光刻等极高精度光学系统的应用需求指明了方向。

     

  • 图 1  不同温度下制备AlF3薄膜的光学性能老化曲线

    Figure 1.  Aging effect of AlF3 coatings prepared at different substrate temperatures

    图 2  由倾斜沉积导致的薄膜结构差异

    Figure 2.  Micro structure difference on coatings caused by oblique angle deposition

    图 3  利用偏振光追迹分析减反膜引起的切趾

    Figure 3.  Apodization analysis of AR coatings by using polarization ray tracing

    图 4  氟化物薄膜充氟后处理前后(a)薄膜微观结构与(b)透过率/反射率曲线对比

    Figure 4.  Changes of (a)microstructure and (b)transmission/reflectance spectra of fluoride coatings before and after postfluorination

    图 5  离子束溅射制备减反膜透过率/反射率曲线

    Figure 5.  Transmission/reflectance curves of an AR coating prepared by ion beam sputter method

    图 6  溶胶-凝胶法制备减反膜透过率曲线

    Figure 6.  Transmission curve of an AR coating prepared by solgel method

    图 7  热蒸发制备减反膜透过率/反射率曲线

    Figure 7.  Transmission/reflectance curves of an AR coating prepared by thermal evaporation method

    图 8  镀膜前后元件波前与应力双折射变化

    Figure 8.  Changes of (a)wavefront and (b)birefringence of a lens due to the coating process

    图 9  典型12吋凸面元件膜厚均匀性校正结果

    Figure 9.  Typical results of thickness correction on a 12-inch convex surface

    图 10  光刻物镜元件上的污染

    Figure 10.  Contamination on a lithography lens

  • [1] [1] BRUNING J. Optical lithography 40 years and holding[J]. SPIE,2007,6520:652004.
    [2] [2] 薛春荣,范正修,邵建达.真空紫外光学薄膜及薄膜材料[J].激光与光电子学进展,2008,45(1):57-64. XUE CH R,FAN ZH X,SHAO J D. Vaccum ultraviolet optical coatings and film materials[J]. Laser & Optoelectronics Progress,2008,45(1):57-64.(in Chinese)
    [3] [3] LINGG L,MACLEOD H. Exploring the crystalline microstructure of thin films using a series of lanthanide trifluorides as a probe[J]. Conference of Optical Interference Coatings,2001,TuE2:1-3.
    [4] [4] LINGG L. Lanthanide trifluoride thin films structure, composition, and optical structures[D]. Ann Arbur,USA:the University of Arizona,1990.
    [5] [5] CHENG-CHUNG L,MING-CHUNG L,MASAAKI K,et al.. Characterization of AlF3 thin films at 193 nm by thermal evaporation[J]. Appl. Opt.,2005,44(34):7333-7338.
    [6] [6] CHINDAUDOM P,VEDAM K. Determination of the optical constants of an inhomogeneous transparent LaF3 thin film on a transparent substrate by spectroscopic ellipsometry[J]. Opt. Lett.,1992,17(7):538-540.
    [7] [7] CHUN G,MINGDONG K,DAWEI L,et al.. Microstructure-related properties of magnesium fluoride films at 193 nm by oblique-angle deposition[J]. Opt. Express,2013,21(8):960-967.
    [8] [8] 姚汉民,胡松,刑廷文.光学投影曝光微纳加工技术[M].北京:北京工业大学出版社,2006. YAO H,HU S,XING T. Optical Projection Exposure Technology of Micro and Nano Fabrication[M]. Bejing:Beijing University of Technology Press,2006.(in Chinese)
    [9] [9] GEH B,RUOFF J,ZIEMMERMANN J,et al.. The impact of projection lens polarization properties on lithographic process at hyper-NA[J]. SPIE,2007,6520:65200F.
    [10] [10] KELKAR P,TIRRI B,WILKLOW R,et al.. Deposition and characterization of challenging DUV coatings[J]. SPIE,2008,7067:706708.
    [11] [11] YANGHUI L,WEIDONG S,YUEGUANG Z,et al.. Fabrication and measurement of low polarization anti-reflection coating at 248 nm[J]. Optik,2013,124(13):1441-1444.
    [12] [12] 廖延彪.偏振光学[M].北京:科学出版社,2003. LIAO Y B. Polarization Optics[M]. Bejing:Science Press,2003.(in Chinese)
    [13] [13] ARTEAGA O,FREUDENTHAL J,WANG B,et al.. Mueller matrix polarimetry with four photoelastic modulators:theory and calibration[J]. Appl. Opt.,2012,51(28):6805-6817.
    [14] [14] ZACZEK C,MULLENDER S,ENKISCH H,et al.. Coatings for next generation lithography[J]. SPIE,2008,7101:71010X.
    [15] [15] STENZEL O,WILBRANDT S,SCHURMANN,et al.. Tailored nanocomposite coatings for optics[J]. Conference of Optical Interference Coatings,2010,2010,MD2:1-3.
    [16] [16] CABFWNU J,SCHREIBER H,WANF J. Dense homogeneous fluoride films for DUV elements and method of preparing same:US Patent 8169705B2[R],2012.
    [17] [17] BAUER H,HELLER M,KAISER N. Optical coatings for UV photolithography systems[J]. SPIE,1996,2776:353-365.
    [18] [18] TAKI Y,WARANABE S,TANAKA A. Postfluorination of fluoride films for vacuum-ultraviolet lithography to improve their optical properties[J]. Appl. Opt.,2006,45(7):1380-1385.
    [19] [19] BISCHOFF M,SODE M,GABLER D,et al.. Metal fluoride coatings prepared by ion-assisted deposition[J]. SPIE,2008,7101:71010L.
    [20] [20] AIKO O. Ion beam sputtering of fluoride thin films for 193 nm applications[J]. Appl. Opt.,2014,53(4):A330-A333.
    [21] [21] YOSHIDA T,NISHIMOTO K,SEKINE K,et al.. Fluoride antireflection coatings for deep ultraviolet optics deposited by ion-beam sputtering[J]. Appl. Opt.,2006,45(7):1375-1379.
    [22] [22] IWAHORI,FURUTA,TAKI Y,et al.. Optical properties of fluoride thin films deposited by RF magnetron sputtering[J]. Appl. Opt.,2006,45(19):4598-4602.
    [23] [23] MURATA T,ISHIZAWA H,MOTOYAMA I,et al.. Preparation of high-performance optical coatings with fluoride nanoparticle films made from autoclaved sols[J]. Appl. Opt.,2006,46(7):1465-1468.
    [24] [24] MURATA T,HIEDA J,SAITO N,et al.. Preparation and wettability examinations of transparent SiO2 binder-added MgF2 nano-particle coatings covered with fluoro-alkylsilane self-assembled monolayer[J]. Appl. Opt.,2012,51(13):2298-2305.
    [25] [25] RUDISILL J. Design deposition process tradeoffs for high-performance optical coatings in the DUV spectral region[J]. SPIE,2004,5273:30-40.
    [26] [26] LICHAO Z,XIKUN C. High performance fluoride optical coatings for DUV optics[J]. SPIE,2014,9281:92810A.
    [27] [27] OTANI M,ITOH T,KUWABARA S,et al.. Optical coatings for the 157 nm full-field exposure tool FS1[J]. Conference of Optical Interference Coatings,2004,WF4:1-3.
    [28] [28] SPENCE P,KANOUFF M,CHAUDURI A. Film-stress-induced deformation of EUV reflective optics[J]. SPIE,1999,3676:724-734.
    [29] [29] 张立超,高劲松.基于遮挡矩阵的膜厚修正挡板的设计[J].光学精密工程,2013,21(11):2757-2763. ZHANG L CH,GAO J S. Design of uniformity correction masks based on shadow matrix[J]. Opt. Precision Eng.,2013,21(11):2757-2763.(in Chinese)
    [30] [30] CUNDING L,MINGDONG K,CHUN G,et al.. Theoretical design of shadowing masks for uniform coatings on spherical substrates in planetary rotation systems[J]. Opt. Express,2012,21(8):23790-23797.
    [31] [31] LICHAO Z,XIKUN C. Uniformity masks design method based on the shadow matrix for coating materials with different condensation characteristics[J]. 2013,2013,Article ID 160792:1-4.
    [32] [32] PIC N,MARTIN C,VITALIS M,et al.. Defectivity decrease in the photolithography process by AMC level reduction through implementation of novel fiteration and monitoring solutions[J]. SPIE,2010,7638:76380M.
    [33] [33] JUE W,MAIER R,DEWA P,et al., Nanoporous structure of a GdF3 thin film evaluated by variable angle spectroscopic ellipsometry[J]. Appl. Opt.,2007,46(16):3221-3226.
    [34] [34] BLOOMSTEIN,LIBERMANN V,ROTHSCHILD M,et al.. UV cleaning of contanminated 157-nm reticles[J]. SPIE,2001,4346:669-675.
    [35] [35] WELLS G,HERMANS J,WATSO R,et al.. Optical path and image performance monitoring of a full field 157 nm scanner[J]. SPIE,2004,5377:91-98.
    [36] [36] NAKASHIMA T,OHMURA Y,OGATA T,et al.. Thermal aberration control in projection lens[J]. SPIE,2008,6924:69241V.
    [37] [37] 武潇野,张立超,时光.应用于高性能光学薄膜表征的光声光热检测技术[J].中国光学,2014,7(5):701-711. WU X Y,ZHANG L CH,SHI G. Optical-thermal and optical-acoustics detecting techniques applied for the characterizations of high performance optical thin films[J]. Chinese Optics,2014,7(5):701-711.(in Chinese)
    [38] [38] WILLAMOWSKI U,RISTAU D,WELSCH E. Measuring the absolute absorptance of optical laser components[J]. Appl. Opt.,1998,37(36):8362-8370.
    [39] [39] BINCHENG L,MARTIN S,WELSCH E. Pulsed top-hat beam thermal lens measurement on ultraviolet dielectric coatings[J]. Opt. Lett.,1999,24(20):1398-1400.
    [40] [40] MUHLIG C,BUBLITZ,PAA W. Laser induced deflection(LID) method for absolute absorption measurements of optical materials and thin films[J]. SPIE,2011,8082:808225.
    [41] [41] SCHAFER B,GLOGER J,LEINHOS U,et al.. Photo-thermal measurement of absorptance losses, temperature induced wavefront deformation and compaction in DUV-optics[J]. Opt. Express,2009,25(17):23025-23036.
    [42] [42] LIBERMAN V,ROTHSCHILD M,SEDLACEK J,et al.. Marathon testing of optical materials for 193-nm lithographic applications[J]. SPIE,1999,3578:1-15.
    [43] [43] CHO B,DANIELEWICZ E,RUDISILL E. Absorption measurement of high-reflectance coated mirrors at 193 nm with a Shack Hartmann wave[J]. Opt. Eng.,2012,51(2):121803.
    [44] [44] NⅡSAKA S,WATANABE Y. Laser durability improvement of deep UV fluoride coatings[J]. SPIE,2008,7132:71320H.
    [45] [45] BLASCHKE H,RISTAU D,WELSCH E,et al.. Absolute measurements of nonlinear absorption near LIDT at 193 nm[J]. SPIE,2001,4347:447-453.
    [46] [46] MANN K,APEL O,ECKERT G,et al.. Testing of optical components for microlithography at 193 nm and 157 nm[J]. SPIE,2001,4346:1340-1348.
    [47] [47] 赵灵,武潇野,谷永强,等.激光量热法测量深紫外氟化物薄膜吸收[J].中国激光,2014,41(8):0807001. ZHAO L,WU X Y,GU Y Q,et al.. Measuring the absorptance of deep ultraviolet fluoride coatings with laser calorimetry[J]. Chinese J. Lasers,2014,41(8):0807001.(in Chinese)
    [48] [48] APEL O,MANN K,ZOLLER A,et al.. Nonlinear absorption of thin Al2O3 films at 193 nm[J]. Appl. Opt.,2000,39(18):3165-3169.
    [49] [49] APEL O,MANN K,MAROWSKY G. Nonlinear thickness dependence of two-photon absorptance in Al2O3 films[J]. Appl. Phys. A,2000,71:593-596.
  • 加载中
图(10)
计量
  • 文章访问数:  2284
  • HTML全文浏览量:  561
  • PDF下载量:  971
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-21
  • 录用日期:  2015-02-13
  • 刊出日期:  2015-04-25

目录

    /

    返回文章
    返回