留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镉掺杂氧化锌纳米花的制备及其光催化活性

翟英娇 李金华 陈新影 宋星慧 任航 方铉 方芳 楚学影 魏志鹏 王晓华

翟英娇, 李金华, 陈新影, 宋星慧, 任航, 方铉, 方芳, 楚学影, 魏志鹏, 王晓华. 镉掺杂氧化锌纳米花的制备及其光催化活性[J]. 中国光学(中英文), 2014, 7(1): 124-130. doi: 10.3788/CO.20140701.0124
引用本文: 翟英娇, 李金华, 陈新影, 宋星慧, 任航, 方铉, 方芳, 楚学影, 魏志鹏, 王晓华. 镉掺杂氧化锌纳米花的制备及其光催化活性[J]. 中国光学(中英文), 2014, 7(1): 124-130. doi: 10.3788/CO.20140701.0124
ZHAI Ying-jiao, LI Jin-hua, CHEN Xin-ying, SONG Xing-hui, REN Hang, FANG Xuan, FANG Fang, CHU Xue-ying, WEI Zhi-peng, WANG Xiao-hua. Synthesis and characterization of Cd-doped ZnO nanoflowers and its photocatalytic activity[J]. Chinese Optics, 2014, 7(1): 124-130. doi: 10.3788/CO.20140701.0124
Citation: ZHAI Ying-jiao, LI Jin-hua, CHEN Xin-ying, SONG Xing-hui, REN Hang, FANG Xuan, FANG Fang, CHU Xue-ying, WEI Zhi-peng, WANG Xiao-hua. Synthesis and characterization of Cd-doped ZnO nanoflowers and its photocatalytic activity[J]. Chinese Optics, 2014, 7(1): 124-130. doi: 10.3788/CO.20140701.0124

镉掺杂氧化锌纳米花的制备及其光催化活性

doi: 10.3788/CO.20140701.0124
基金项目: 

国家自然科学基金资助项目(No.61006065,No.61076039,No.61204065,No.61205193,No.10804071);高功率半导体激光国家重点实验室基金资助项目(No.9140C310101120C031115);高等学校博士学科点专项科研基金资助项目(No.21022216110002,No.20102216110001,No.20112216120005);吉林省自然科学基金资助项目(No.20101546,No.20100111);吉林省科技发展计划资助项目(No.20090139,No.20090555,No.20121816,No.201201116);吉林省教育厅资助项目(No.2011JYT05,No.2011JYT10,No.2011JYT11);长春市国际科技合作计划资助项目(No.2010CC02);吉林农业大学科研启动基金资助项目(No.201238)

详细信息
    作者简介:

    翟英娇(1988—),女,吉林长春人,硕士研究生,2011年于长春理工大学获得学士学位,主要从事纳米材料的光学性质方面的研究。E-mail:zhaiyingjiao0613@sina.com

    通讯作者:

    李金华,E-mail:Jhli_cust@163.com

  • 中图分类号: TB383

Synthesis and characterization of Cd-doped ZnO nanoflowers and its photocatalytic activity

  • 摘要: 以氯化锌、氯化镉、氢氧化钠为原料,采用水热法合成Cd掺杂纳米花状ZnO光催化剂,并通过该样品对罗丹明B水溶液的降解来研究其光催化活性。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线能量色散谱(EDS)、光致发光谱(PL)及紫外-可见分光光度计(UV-Vis)等测试手段对材料物性进行表征。实验结果表明:当掺杂Cd2+时,样品形貌发生变化、粒径减小;掺杂Cd2+后的ZnO的吸收边和紫外峰对比于纯ZnO均发生红移,禁带宽度由3.24 eV 减小到3.16 eV。通过光催化实验分析可知,掺杂后纳米ZnO光催化剂对罗丹明B 水溶液的降解率有所提高,光照3 h其降解率高达98%,说明与纯ZnO相比,Cd掺杂ZnO纳米花具有更高的光催化活性。

     

  • [1] 韩世同, 习海玲, 史瑞雪, 等. 半导体光催化研究进展与展望[J]. 化学物理学报, 2003, 16(5):339-349. HAN SH T, XI H L, SHI R X, et al.. Prospect and progress in the semiconductor photocatalysis[J]. Chem. Phys., 2003, 16(5):339-349.(in Chinese) [2] ZHANG Z Y, SHAO C L, LI X H, et al.. Electrospun nanofibers of ZnO-SnO2 heterojunction with high photocatalytic activity[J]. J. Phys. Chem. C, 2010, 114(17):7920-7925. [3] XIAO M W, WANG L S, WU Y D, et al.. Preparation and characterization of CdS nanoparticles decorated into titanate nanotubes and their photocatalytic properties[J]. Nanotechnology, 2008, 19 (1):015706-1-7. [4] YIN J, LIU Z G, LIU H, et al.. The epitaxial growth of wurtzite ZnO films on LiNbO3(0001) substrates[J]. J. Crystal Growth, 2000, 220:281-285. [5] LEE G H, YAMAMOTO Y, KOUROGI M, et al.. Blue shift in room temperature photoluminescence from photo-chemical vapor deposited ZnO films[J]. Thin Solid Films, 2001, 386:117-120. [6] CHEN G W, ZHU R. Silicon micromachined resonant accelerometer based on ZnO nanowire[J]. Opt. Precision Eng., 2009, 17(6):1279-1285. [7] SUN T J, QIU J S, LIANG C H. Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays[J]. J. Phys. Chem. C, 2008, 112(3):715-721. [8] PARK W I, KIM J S, YI G C, et al.. ZnO nanorod Logic circuits[J]. Adv. Mater., 2005, 17(32):1393-1397. [9] KUO T J, LIN C N, KUO C L, et al.. Growth of ultralong ZnO nanowires on silicon substrates by vapor transport and their use as recyclable photocatalysts[J]. Chem. Mater., 2007, 19(21):5143-5147. [10] GEORGEKUTTY R, SEERY M K, PILLAI S C. A highly efficient Ag-ZnO photocatalyst:synthesis, properties, and mechanism[J]. J. Phys. Chem. C, 2008, 112(35):13563-13570. [11] LI D M, LI J H, FANG X, et al.. Growth mechanism structural and optical properties of hexagonal cone-shaped ZnO nanostructure[J]. Chin. Lumin., 2010, 31(1):114-118. [12] 程萍, 顾明远, 金燕苹. TiO2光催化剂可见光化研究进展[J]. 化学进展, 2005, 17(1): 8-14. CHENG P, GU M G, JIN Y P. Recent progress in titania photocatalyst operating under visible light[J]. Prog. Chem., 2005, 17(1):8-14.(in Chinese) [13] 陈崧哲, 张彭义, 祝万鹏, 等. 可见光响应光催化剂研究进展[J]. 化学进展, 2004, 16(4): 613-619. CHEN S Z, ZHANG P Y, ZHU W P, et al.. Progress in visible light responding photocatalysts[J]. Prog. Chem., 2004, 16(4):613-619.(in Chinese) [14] CHIOU J W, RAY S C, TSAI H M, et al.. Correlation between electronic structures and photocatalytic activities of nanocrystalline-(Au, Ag, and Pt) particles on the surface of ZnO nanorods[J]. J. Phys. Chem. C, 2011, 115:2650-2655. [15] WANG Y S, JOHN P, BRIEN P O. Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions[J]. J. Phys. Chem. B, 2006, 110(43):21412-21415. [16] ZHOU S M, MENG X M, ZHANG X H, et al.. Large-scale fabrication and characterization of Cd-doped ZnO nanocantilever arrays[J]. Micron, 2005, 36:55-59. [17] ZHOU S M, ZHANG X H, MENG X M, et al.. Fabrication of large-scale ultra-fine Cd-doped ZnO nanowires[J]. Mater. Research Bull., 2006, 41:340-346. [18] YAKUPHANOGL F, ILICAN S, CAGLAR M, et al.. Microstructure and electro-optical properties of sol-gel derived Cd-doped ZnO films[J]. Superlattices and Microstructures, 2010, 47:732-743. [19] LI B X, WANG Y F. Facile synthesis and enhanced photocatalytic performance of flower-like zno hierarchical microstructures[J]. J. Phys. Chem. C, 2010, 114(2):890-896. [20] 兰飞飞, 王金忠, 王敦博, 等. Cu掺杂ZnO纳米材料的制备及表征[J]. 发光学报, 2013, 34(2):139-143. LAN F F, WANG J ZH, WANG D B, et al.. Preparation and characterization of Cu-doped ZnO nano materials[J]. Chinese J. Luminescence, 2013, 34(2):139-143.(in Chinese) [21] VIGIL O, VAILLANT L, CRUZ F, et al.. Spray pyrolysis deposition of cadmium-zinc oxide thin films[J]. Thin Solid Films, 2000, 361(362):53-55. [22] 杜鸿延, 魏志鹏, 孙丽娟, 等. 与掺杂浓度相关的ZnS:Mn纳米粒子的发光性质[J]. 中国光学, 2013, 6(1):111-116. DU H Y, WEI ZH P, SUN L J, et al. Luminescent properties of ZnS:Mn nanoparticles dependent on doping concentration[J]. Chinese Optics, 2013, 6(1):111-116.(in Chinese) [23] 吉列凤, 王丹军, 郭莉, 等. 钆、镉共掺纳米TiO2光催化剂的合成及其光催化性能研究[J]. 延安大学学报, 2010, 29(2):71-75. JI L F, WANG D J, GUO L, et al.. Synthesis of Gd-Cd Co-doped nano Tio2 photocatalyst and its photocatalytic activity[J]. J. Yanan Universi, 2010, 29(2):71-75.(in Chinese) [24] 陈航, 邓宏, 戴丽萍, 等. 掺Cd对ZnO薄膜光学性能的影响[J]. 人工晶体学报, 2008, 37(1):213-217. CHEN H, DENG H, DAI L P, et al.. Cd-doping efects on structure and optical properties of ZnO thin films[J]. J. Synthetic Crystals, 2008, 37(1):213-217.(in Chinese) [25] 罗添元, 魏志鹏, 李金华, 等. Cd/ZnO纳米复合结构的制备、表征及其光催化活性的改善[J]. 发光学报, 2011, 32(7):680-685. LUO T Y, WEI Z P, LI J H, et al.. Synthesis and characterization of CdS/ZnO nano-composites structure and enhanced photocatalytic[J]. Chin. Lumin., 2011, 32(7):680-685.(in Chinese) [26] ZHAO L L, WANG J Y, BOUGHTON R I, et al.. The surface morphology and photoluminescence properties of ZnO crystals synthesized by flux method[J]. Chinese J. Luminescence, 2012, 33(9):917-922. [27] 徐志堃, 赵东旭, 孙兰兰, 等. 海胆状ZnO纳米线阵列的制备及其光学性能[J]. 发光学报, 2012, 33(9):1001-1005. XU ZH K, ZHAO D X, SUN L L, et al.. Fabrication and optical properties of urchin-like ZnO nanowire arrays[J]. Chinese J. Luminescence, 2012, 33(9):1001-1005.(in Chinese) [28] 孙晓绮, 孟庆华, 孟庆云. 铕掺杂氧化锌纳米棒阵列材料的制备及光学性能研究[J]. 发光学报, 2013, 34(5):573-578. SUN X Q, MENG Q H, MENG Q Y. Fabrication and optical properties of Eu-doped ZnO nanorod arrays[J]. Chinese J. Luminescence, 2013, 34(5):573-578.(in Chinese) [29] 徐志堃, 赵东旭, 孙兰兰, 等. ZnO薄膜的性质对水热生长ZnO纳米线阵列的影响[J]. 发光学报, 2012, (5):549-552. XU ZH K, ZHAO D X, SUN L L, et al.. Influences of ZnO film characteristics on zno nanowire arrays prepared by hydrothermal method[J]. Chinese J. Luminescence, 2012, (5):549-552.(in Chinese) [30] SONG X C, ZHENG Y F, LIU G, et al.. Photocatalytic activities of Cd-doped ZnWO4 nanorods prepared by a hydrothermal process[J]. J. Hazardous Materials, 2010, 179:1122-1127.
  • 加载中
计量
  • 文章访问数:  1575
  • HTML全文浏览量:  256
  • PDF下载量:  566
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-21
  • 修回日期:  2013-12-23
  • 刊出日期:  2014-01-25

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!