留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面发射分布反馈半导体激光器及光栅耦合半导体激光器

戚晓东 叶淑娟 张楠 秦莉 王立军

戚晓东, 叶淑娟, 张楠, 秦莉, 王立军. 面发射分布反馈半导体激光器及光栅耦合半导体激光器[J]. 中国光学(中英文), 2010, 3(5): 415-431.
引用本文: 戚晓东, 叶淑娟, 张楠, 秦莉, 王立军. 面发射分布反馈半导体激光器及光栅耦合半导体激光器[J]. 中国光学(中英文), 2010, 3(5): 415-431.
QI Xiao-dong, YE Shu-juan, ZHANG Nan, QIN Li, WANG Li-jun. Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes[J]. Chinese Optics, 2010, 3(5): 415-431.
Citation: QI Xiao-dong, YE Shu-juan, ZHANG Nan, QIN Li, WANG Li-jun. Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes[J]. Chinese Optics, 2010, 3(5): 415-431.

面发射分布反馈半导体激光器及光栅耦合半导体激光器

基金项目: 

国家自然科学基金重点资助项目(No.60636020);国家自然科学基金资助项目(No.60676034,10974012);吉林省科技发展项目(No.20080335);中国科学院知识创新工程领域前沿项目和国家自然科学基金重点支持项目(No.90923037)

详细信息
    作者简介:

    戚晓东(1985—),男,山东临沂人,硕士研究生,主要从事新型半导体激光器、纳米电子学和纳米光子学方面的研究。E-mail:qi.xiaodong@queensu.ca
    王立军(1946—),男,吉林舒兰人,研究员,博士生导师,主要从事大功率半导体激光器方面的研究。 E-mail:wanglj@ciomp.ac.cn

    戚晓东(1985—),男,山东临沂人,硕士研究生,主要从事新型半导体激光器、纳米电子学和纳米光子学方面的研究。E-mail:qi.xiaodong@queensu.ca
    王立军(1946—),男,吉林舒兰人,研究员,博士生导师,主要从事大功率半导体激光器方面的研究。 E-mail:wanglj@ciomp.ac.cn

  • 中图分类号: TN248.4

Surface-emitting distributed-feedback semiconductor lasers and grating-coupled laser diodes

  • 摘要: 阐述了以曲线光栅面发射分布反馈半导体激光器(SEDFB)为代表的SE-DFB器件的原理和结构,讨论了它们的性能和特点并与其他类型的半导体激光器进行了比较。指出依靠曲线光栅特殊的衍射特性,可实现对模式的控制和二维漏模耦合阵列化出光,得到窄线宽(典型值0.08 nm)、小发散角(典型值0.5 mrad)、高亮度(单管近衍射极限3 W(CW))和大功率(单管最高73 W,列阵为kW级)的激光。综述了SE-DFB的发展历程、现状及未来的发展趋势,强调由于曲线光栅耦合SE-DFB激光器兼具边发射和面发射器件的优势和诸多其他优秀性能,将其应用于不同材料体系,不同结构的半导体激光器及其阵列,制作不同波段的高功率、高光束质量的SEDFB器件会有很好的研究意义和应用前景。

     

  • [1] MACOMBER S H,MOTT J S,NOLL R J. Surface-emitting distributed feedback semiconductor laser[J]. Appl. Phys. Lett.,1987,17(7):472-474. [2] MOTT J S,MACOMBER S H. Two-dimensional surface emitting distributed feedback kaser arrays[J]. IEEE Photonics Technol. Lett.,1989,1(8):202-204. [3] AKKAPEDDI P,MACOMBER S H. Surface emitting distributed feedback laser as a source for laser radar[J]. SPIE,1991,1416:44-50. [4] KASRAIAN M,BOTEZ D. Anti-phase complex-coupled, surface-emitting distributed-feedback diode laser[J]. SPIE,1997,3001:55-62. [5] MACOMBER S H,MOTT J S,SCHWARTZ B D,et al.. Curved-grating, surface-emitting DFB lasers and arrays[J]. SPIE,1997,3001:42-45. [6] LI S. High-coherent-power, two-dimensional grating surface-emitting(GSE) semiconductor lasers . Madison:Unversity of Wisconsin-Madison,2006. [7] OVERTON G. Semiconductor lasers:curved grating creates high-brightness surface-emitting DFB laser[J]. Laser Focus World,2009,45(4):35-36. [8] BOTEZ D. High-power monolithic single-mode diode lasers employing active photonic lattices[J]. SPIE,2003,4993:20-22. [9] WITJAKSONO G,LI S J J L,BOTEZ D. Single-lobe,surface-normal beam surface emission from second-order distributed feedback lasers with half-wave grating phase shift[J]. Appl. Phys. Lett.,2003,83(23):5365-5367. [10] LOPEZ J,WITJAKSONO G,BOTEZ D. Single-mode, single-lobe operation of surface-emitting, second-order distributed feedback lasers[J]. Appl. Phys. Lett.,1999,75(7):885-887. [11] 李宜峰. 两段式DFB半导体激光器模式及双稳特性研究 . 成都:西南交通大学 ,2002. LI Y F. Investigation on mode characteristics of two-segment DFB lasers . Chengdu:Southwest Jiaotong University,2002. [12] GHAFOURI-SHIRAZ H. Distributed Feedback Laser Diodes and Optical Tunable Filters[M]. New Jersey:Wiley,2003. [13] LI X F,YU S F,MEMBER S. Static and dynamic modeling of circular grating-coupled distributed feedback lasers[J]. IEEE J. Quantum Electronics,2008,44(8):770-776. [14] SUN X K,YARIV A. Surface-emitting circular DFB, disk- and ring-Bragg resonator lasers with chirped gratings:a unified theory and comparative study[J]. Optics Express,2008,16(12):9155-9164. [15] SUN X K,YARIV A. Surface-emitting circular DFB, disk-, and ring-Bragg resonator lasers with chirped gratings. II:nonuniform pumping and far-field patterns[J]. Opt. Express,2009,17(1):1-6. [16] SUN X K,YARIV A. Surface-emitting circular DFB, disk-, and ring-Bragg resonator lasers with chirped gratings III:gain saturation effects and above-threshold analysis[J]. Opt. Express,2009,17(12):10119-10125. [17] WITJAKSONO G,LI S,LEE J J,et al.. Single-lobe, surface-normal beam surface emission from second-order distributed feedback lasers with half-wave grating phase shift[J]. Appl. Phys. Lett.,2003,83(23):5365-5367. [18] NESNIDAL M,MAWST L,BOTEZ D. Distributed-feedback grating used lateral-mode selector in phase-locked antiguided arrays[J]. IEEE Photonics Technol. Lett.,1997,9(1):34-36. [19] KASRAIAN M,BOTEZ D. Metal-grating-outcoupled,surface-emitting distributed-feedback diode lasers[J]. Appl. Phys. Lett.,1996,69(10):2795-2797. [20] GOLSHANI A,LOCK A,FREISLEBEN S. Adjustable surface emission from AlGaAs/GaAs laser diodes based on first-order-grating coupled surface mode emission[J]. Appl. Phys. Lett.,1996,69(16):2312-2314. [21] BOTEZ D,CENTER T,BEACH R. High-power monolithic phase-locked arrays of antiguided semiconductor diode lasers[J]. IEE Proceedings J Optoelectronics,1992,139(1):14-23. [22] KANSKAR M,BRUNET F. Surface-emitting laser array .Photonics Spectra,2009. http://www.ventureinvestors.com/archives/1628. [23] KOGELNIK H,SHANK C. Coupled-wave theory of distributed feedback lasers[J]. J. Appl. Phys.,1972,43(5):2327-2335. [24] NAKAMURA M,AIKI K,UMEDA J,et al.. cw operation of distributed-feedback GaAs/GaAlAs diode lasers at temperatures up to 300 K[J]. Appl. Phys. Lett.,1975,27(1):403-405. [25] WEYERS M,BHATTACHARYA A,BUGGE F,et al. Epitaxy of high-power diode-laser structures[J]. Topics Appl. Phys.,2000,78:83-120. [26] SODA H,IGA K,KITAHARA C,et al.. GaInAsP/InP surface emitting injection lasers[J]. Jpn J Appl. Phys.,1979,18(12):2329-2330. [27] SODA H,MOTEGI Y,IGA K. GaInAsP/InP surface emitting injection lasers "with short cavity length"[J]. IEE J. Quantum Electron.,1983,QE-19(6):1035-1041.. [28] IGA K,ISHIKAWA S,OHKOUCHI S,et al. Room-temperature pulsed oscillation of GaAlAs/GaAs surface emitting injection laser[J]. Appl. Phys. Lett.,1984,45:348-350. [29] HECHT J. Surface-emitters take on high power[J]. Laser Focus World,2005,41(5):143-147. [30] WELCH D,PARKE R,HARDY A,et al. Low-threshold grating-coupled surface-emitting lasers[J]. Appl. Phys. Lett.,1989,55:813-815. [31] MAKINO T. Spontaneous emission model of surface-emitting DFB semiconductorlasers[J]. IEEE J. Quantum Electron.,1993,29(1):14-22. [32] NG W,HONG C-S,YARIV A. Holographic interference litho-graphy for integrated optics[J]. IEEE Trans On Electron Devices,1978,25(10):1193-1200. [33] SCHATTENBURG M,ANDERSON E,SMITH H. X-ray/VUV transmission gratings for astrophysical and laboratory applications[J]. Phys. Scripta,1990,41:13-20. [34] RAO C,CHEETHAM A. Science and technology of nanomaterials:current status and future prospects[J]. J. Mater. Chem.,2001,11(12):2887-2894. [35] HIRAI Y,HARADA S,ISAKA S,et al.. Nano-Imprint lithography using replicated mold by Ni electroforming[J]. Jpn J. Appl. Phys.,2002,1(41):4186-4189. [36] SREENIVASAN S,WILLSON C,SCHUMAKER N,et al.. Low-cost nanostructure patterning using step and flash imprint lithography[J]. SPIE,2002,4608:187-194. [37] SHAO D,CHEN S. Surface-plasmon-assisted nanoscale photolithography by polarized light[J]. Appl. Phys. Lett.,2005,86(25):253107. [38] NAKAYAMA Y,OKAZAKI S,SAITOU N,et al. Electron-beam cell projection lithography:a new high-throughput electron-beam direct-writing technology using a specially tailored Si aperture[J]. J. Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1990,8:1836-1840. [39] LOHAU J,FRIEDRICHOWSKI S,DUMPICH G,et al.. Electron-beam lithography with metal colloids:direct writing of metallic nanostructures[J]. J. Vacuum Science & Technol. B:Microelectronics and Nanometer Structures,1998,16:77-79. [40] Van KAN J,BETTIOL A,WATT F. Three-dimensional nanolithography using proton beam writing[J]. Appl. Phys.,Lett.,2003,83:1629-1631. [41] SANZ D,RORISON J,YU S. InGaN/GaN MQW Laser Diodes with 4th Order FIB-etched Gratings[J]. Quantum Electronics and Laser Science,2005,2:1023-1025. [42] CAMPBELL S. The Science and Engineering of Microelectronic Fabrication[M]. New York:Oxford University Press,1996. [43] PEASE R,CHOU S. Lithography and other patterning techniques for future electronics[J]. IEEE,2008,96(2):248-250. [44] ERDOGAN T,HALL D. Circularly symmetric distributed feedback semiconductor laser:an analysis[J]. Appl. Phys.,1990,68:1435-1444. [45] ERDOGAN T,KING O,WICKS G,et al.. Circularly symmetric operation of a concentric-circle-grating,surface-emitting,AlGaAs/GaAs quantum-well semiconductor laser[J]. Appl. Phys. Lett.,1992,60:1921-1923. [46] FALLAHI M,CHATENOUD F,TEMPLETON I,et al.. Recent developments on InGaAs/GaAs circular-grating distributed Bragg reflector lasers[J]. SPIE,1995,2398:135-141. [47] LARSSON A,HAGBERG M,ERIKSSON N,et al.. Grating coupled surface emitters with enhanced surface emission efficiency[J]. SPIE,1995,2398:21-33. [48] JORDAN R,HALL D. Radiation from concentric-circle grating,surface-emitting planar waveguides:the volume current method[J]. Appl. Phys. Lett.,1994,64:3077-3079. [49] JORDAN R,HALL D. Highly directional surface emission from concentric-circle gratings on planar optical waveguides:the f ield expansion method[J]. J. Opt. Society Am. A,1995,12(1):84-94. [50] JORDAN R,HALL D,KING O,et al.. Lasing behavior of circular grating surface-emitting semiconductor lasers[J]. J. Opt. Society Am. B,1997,14(2):449-453. [51] OLSON C,GREENE P,WICKS G,et al.. High-order azimuthal spatial modes of concentric-circle-grating surface-emitting semiconductor lasers[J]. Appl. Phys. Lett.,1998,72:1284-1286. [52] WRIGHT K. Nonlinear dynamics of circular-grating distributed-feedback semiconductor devices[J]. J Opt. Soc. Am. B,1999,16:96-102. [53] LI M,WANG J,ZHUANG L,et al.. Fabrication of circular optical structures with a 20 nm minimum feature size using nanoimprint lithography[J]. Appl. Phys. Lett.,2000,76:673-675. [54] TOVAR A,CLARK G. Concentric-circle-grating,surface-emitting laser beam propagation in complex optical systems[J]. J. Opt. Soc. Am. A,1997,14(12):3333-3340. [55] BOTEZ D,MAWST L,PETERSON G,et al.. Resonant optical transmission and coupling in phase-locked diode laser arrays of antiguides:the resonant optical waveguide array[J]. Appl. Phys. Lett.,1989,54:2183-2185. [56] ZMUDZINSKI C,BOTEZ D,MAWST L. Simple description of laterally resonant,distributed-feedback-like modes of arrays of antiguides[J]. Appl. Phys. Lett.,1992,60:1049-1051. [57] MAWST L,BOTEZ D,ZMUDZINSKI C,et al.. Resonant self-aligned-stripe antiguided diode laser array[J]. Appl. Phys. Lett.,1992,60:668-670. [58] BOTEZ D,MAWST L. Γ effect:key intermodal-discrimination mechanism in arrays of antiguided diode lasers[J]. Appl. Phys. Lett.,1992,60:3096-3098. [59] CHOA F,SHIH M,FAN J,et al.. Very low threshold 1.55 μm grating coupled surface-emitting lasers for optical signal processing and interconnect[J]. Appl. Phys. Lett.,1995,67:2777-2779. [60] FALLAHI M,KASUNIC K J. Design and fabrication of circular grating coupled distributed Bragg reflector lasers[J]. Opt. Eng.,1998,37(4):1169-1174. [61] NESNIDAL M,MAWST L,BOTEZ D,et al.. Lateral-mode selection in phase-locked antiguided arrays via distributed-feedback grating[J]. SPIE,1997,3001:82-86. [62] LOPEZ J,KASRAIAN M,BOTEZ D. Surface-emitting,distributed-feedback diode lasers with uniform near-field intensity profile[J]. Appl. Phys. Lett.,1998,73:2266-2268. [63] BOTEZ D,KASRAIAN M. Single lobe surface emitting complex coupled distributed feedback semiconductor laser:US,5727013 .1998-03-10. [64] YANG H,MAWST LJ,NESNIDAL M,et al.. 10 W near-diffraction-limited peak pulsed power from Al-free,0.98 m-emitting phase-locked antiguided arrays[J]. Electronics Lett.,1997,33(2):136-137. [65] NAPARTOVICH A,BOTEZ D. Analytical theory of phase-locked arrays of antiguided diode lasers[J]. SPIE,1997,2994:600-609. [66] WITJAKSONO G,BOTEZ D. Surface-emitting,single-lobe operation from second-order distributed-reflector lasers with central grating phaseshift[J]. Appl. Phys. Lett.,2001,78:4088-2090. [67] SHUANG L,WITJAKSONO G,MACOMBER S,et al.. Analysis of surface-emitting second-order distributed feedback lasers with central grating phaseshift[J]. Selected Topics in Quantum Electronics,IEEE J.,2003,9(5):1153-1165. [68] YANG H,MAWST L,BOTEZ D. 1.6 W continuous-wave coherent power from large-index-step (Δn ≈0.1) near-resonant,antiguided diode laser arrays[J]. Appl. Phys. Lett.,2000,76:1219-1221. [69] BOTEZ D. High-power coherent GaAs-based monolithic semiconductor lasers[J]. SPIE,2001,4533:41-46. [70] BOTEZ D. Active photonic lattices for high-coherent-power generation[J]. SPIE,2002,4651:233-237. [71] BOTEZ D. Active photonic lattices:lasers for watt-range coherent-power generation[J]. SPIE,2002,4905:78-84. [72] WITJAKSONO G,LI S,LEE J,et al.. Single-lobe,surface-normal beam surface emission from second-order distributed feedback lasers with half-wave grating phase shift[J]. Appl. Phys. Lett.,2003,83:5365-5367. [73] BOTEZ D. High-power monolithic single-mode diode lasers employing active photonic lattices[J]. SPIE,2003,4993:20-27. [74] BOTEZ D. High-power high-brightness semiconductor lasers[J]. SPIE,2005,5624:203-212. [75] LI S,XU D,BOTEZ D. High power,single-mode operation from photonic-lattice semiconductor lasers with controllable lateral resonance[J]. Appl. Phys. Lett.,2006,88(9):091112. [76] LI S,BOTEZ D. Analysis of 2-D surface-emitting ROW-DFB semiconductor lasers for high-power single-mode operation[J]. IEEE J. Quantum Electronics,2007,43(8):655-668. [77] DENTE G C. Low confinement factors for suppressed filaments in semiconductor lasers[J]. IEEE J. Quantum Electron.,2001,37(12):1650-1653. [78] MACOMBER S. Design of high-power,surface-emitting DFB lasers for suppression of filamentation[J]. SPIE,2003,4993:37-49. [79] LI S,BOTEZ D. Design for high-power single-mode operation from 2-D surface-emitting ROW-DFB lasers[J]. IEEE Photonics Technology Lett.,2005,17(3):519-521. [80] KANSKAR M,CAI J,GALSTAD C,et al.. High power conversion efficiency and wavelength stabilized, narrow bandwidth 975 nm siode laser pumps[J]. SPIE,2006,6216(09):1-7. [81] KANSKAR M,HE Y,CAI J,et al.. 53% wallplug efficiency 975 nm distributed feedback broad area laser[J]. Electronics Lett.,2006,42:1455-1456. [82] Alfalight. Novel Grating Boosts Brightness[M]. Madison:Alfalight Inc. 2009. [83] MODH P,BACKLUND J,BENGTSSON J,et al.. Multifunctional gratings for surface-emitting lasers:design and implementation[J]. Appl. Opt.,2003,42:4847-4854. [84] BARNES W,DEREUX A,EBBESEN T. Surface plasmon subwavelength optics[J]. Nature,2003,424(6950):824-830. [85] OZBAY E. Plasmonics:merging photonics and electronics at nanoscale dimensions[J]. Science,2006,311(5758):189-193. [86] ATWATER H A. The promise of plasmonics[J]. Scientific American,2007,17(3):56-63. [87] EBBESEN T,LEZEC H,GHAEMI H,et al.. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature,1998,391(6668):667-669. [88] OKAMOTO K,NIKI I,SHVARTSER A,et al.. Surface-plasmon-enhanced light emitters based on InGaN quantum wells[J]. Nature Materials,2004,3(9):601-605. [89] PAIELLA R. Tunable surface plasmons in coupled metallo-dielectric multiple layers for light-emission efficiency enhancement[J]. Appl. Phys. Lett.,2005,87(11):111104. [90] VUCKOVIC J,LONCAR M,SCHERER A. Surface plasmon enhanced light-emitting diode[J]. IEEE J. Quantum Electron.,2000,36(10):1131-1144. [91] LIU J,BRONGERSMA M. Omnidirectional light emission via surface plasmon polaritons[J]. Appl. Phys. Lett.,2007,90(9):091116. [92] LEZEC H,DEGIRON A,DEVAUX E,et al.. Beaming light from a subwavelength aperture[J]. Science,2002,297(5582):820-822. [93] MARTIN-MORENO L,GARCIA-VIDAL F,LEZEC H,et al.. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Phys. Rev. Lett.,2003,90(16):167401. [94] GUO B,SONG G,CHEN L. Plasmonic very-small-aperture lasers[J]. Appl. Phys. Lett.,2007,91:021103. [95] CHUANG W,WANG J,YANG C,et al.. Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well[J]. IEEE Photonics Technol. Lett.,2008,20(16):1339-1341. [96] LIU H,LALANNE P. Microscopic theory of the extraordinary optical transmission[J]. Nature,2008,452(7188):728-731. [97] PFLUGL C,AUSTERER M,SCHRENK W,et al.. Single-mode surface-emitting quantum-cascade lasers[J]. Appl. Phys. Lett.,2005,86(21):211102. [98] SCHRENK W,FINGER N,GIANORDOLI S,et al.. Surface-emitting distributed feedback quantum-cascade lasers[J]. Appl. Phys. Lett.,2000,77(14):2086-2088. [99] GMACHL C,CAPASSO F,FAIST J,et al.. Continuous-wave and high-power pulsed operation of index-coupled distributed feedback quantum cascade laser at λ≈ 8.5 μm[J]. Appl. Phys. Lett.,1998,72:1430-1432. [100] NAMJOU K,CAI S,WHITTAKER E,et al.. Sensitive absorption spectroscopy with a room-temperature distributed-feedback quantum-cascade laser[J]. Opt. Lett.,1998,23(3):219-221. [101] YU J S,SLIVKEN S,DARVISH S R,et al.. High-power,room-temperature,and continuous-wave operation of distributed-feedback quantum-cascade lasers at lambda ~4.8 μm[J]. Appl. Phys. Lett.,2005,87(4):041104. [102] XING Q,LI S,TIAN Z,et al.. Enhanced zero-order transmission of terahertz radiation pulses through very deep metallic gratings with subwavelength slits[J]. Appl. Phys. Lett.,2006,89:041107. [103] YU N,CUBUKCU E,DIEHL L,et al.. Bowtie plasmonic quantum cascade laser antenna[J]. Opt. Express,2007,15(20):13272-13281. [104] YU N,CUBUKCU E,DIEHL L,et al.. Plasmonic quantum cascade laser antenna[J]. Appl. Phys. Lett.,2007,91:173113. [105] YU N,FAN J,WANG Q,et al.. Small-divergence semiconductor lasers by plasmonic collimation[J]. Nature Photonics,2008,2(9):564-570. [106] YU N,BLANCHARD R,FAN J,et al.. Small divergence edge-emitting semiconductor lasers with two-dimensional plasmonic collimators[J]. Appl. Phys. Lett.,2008,93:181101. [107] CAPASSO F,YU N,CUBUKCU E,et al.. Using plasmonics to shape light beams[J]. Opt. Photonics News,20(5):22-27. [108] TZALLAS P,SKANTZAKIS E,KALPOUZOS C,et al. Generation of intense continuum extreme-ultraviolet radiation by many-cycle laser fields[J]. Nature Phys.,2007,3(12):846-850. [109] HAURI C,KORNELIS W,HELBING F,et al.. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation[J]. Appl. Phys. B:Lasers and Optics,2004,79(6):673-677. [110] ANTOSIEWICZ T,WR Bel P,SZOPLIK T. Nanofocusing of radially polarized light with dielectric-metal-dielectric probe[J]. Opt. Express,2009,17:9191-9196. [111] BAIDA F,BELKHIR A. Superfocusing and light confinement by surface plasmon excitation through radially polarized beam[J]. Plasmonics,2009,4(1):51-59. [112] VOGEL M. Theoretical and numerical investigation of plasmon nanofocusing in metallic tapered rods and grooves . Queensland:Queensland University of Technology,2009. [113] JORGE B,MARIN S. A unified picture of laser physics[J]. Science,2008,320(5876):623-624. [114] TURECI H,GE L,ROTTER S,et al.. Strong interactions in multimode random lasers[J]. Science,2008,320(5876):643-646. [115] CHEN S,QIAN B,CHEN K,et al.. Conformal coverage for two-dimensional arrays of microcavites with quasi-three dimensional confinement by distributed Bragg reflectors[J]. Appl. Surface Sci.,2007,253(9):4254-4259. [116] PEDACI F,BARLAND S,CABOCHE E,et al.. All-optical delay line using semiconductor cavity solitons[J]. Appl. Phys. Lett.,2008,92(1):011101. [117] GARCIA-VIDAL F,MORENO E. Lasers go nano[J]. Nature,2009,461(7264):604-605. [118] NOGINOV M,ZHU G,BELGRAVE A,et al.. Demonstration of a spaser-based nanolaser[J]. Nature,2009,460(7259):1110-1112. [119] OULTON R,SORGER V,ZENTGRAF T,et al.. Plasmon lasers at deep subwavelength scale[J]. Nature,2009,461(7264):629-632. [120] CAUSA F,MASANOTTI D. Observation and analysis of phase-locking in parabolic bow-tie laser arrays[J]. IEEE J. Quantum Electron.,2006,42(10):1016-1022. [121] CAUSA F,MASANOTTI D. High brightness index-guided parabolic bow-tie laser arrays[J]. IEEE Photonics Technol. Lett.,2004,16(9):2000-2002. [122] MASANOTTI D,CAUSA F. Optical guiding properties of high-brightness parabolic bow-tie laser arrays[J]. IEEE J. Quantum Electronics,2005,41(7):909-916. [123] MASANOTTI D,CAUSA F,SARMA J. High brightness,index-guided parabolic bow-tie laser diodes[J]. IEE Proceedings-Optoelectronics,2004,151:123-128. [124] STREIFER W,HARDY A,BURNHAM R,et al.. Single-lobe phased-array diode lasers[J]. Electronics Lett.,1985,21(3):118-120. [125] STREIFER W,WELCH D,CROSS P,et al.. Y-junction semiconductor laser arrays:Part I-Theory[J]. IEEE J. Quant Electron,1987,23(6):744-751. [126] STREIFER W,BURNHAM R D,SCIFRES D R. Radiation losses in distributed feedback lasers and longitudinal mode selection[J]. IEEE J. Quantum Electron.,1976,QE-13:154-161. [127] SCIFRES D,STREIFER W,BURNHAM R. Experimental and analytic studies of coupled multiple stripe diode lasers[J]. IEEE J. Quantum Electron.,1979,15(9):917-922. [128] MILTON A,BURNS W. Mode coupling in optical waveguide horns[J]. IEEE J. Quantum Electron.,1977,13(10):828-835. [129] BUTLER J,ACKLEY D,BOTEZ D. Coupled-mode analysis of phase-locked injection laser arrays[J]. Appl. Phys. Lett.,1984,44(14):293-295. [130] BOTEZ D,SCIFRES D. Diode Laser Arrays[M]. Cambridge:Cambridge Univ Press,1994. [131] WELCH D,STREIFER W,CROSS P,et al.. Y-Junction semiconductor laser arrays:Part II--Experiments[J]. IEEE J. Quantum Electron.,1987,23(6):752-756. [132] ELARDE V,TOBIN K,PRICE R,et al.. Curved waveguide array diode lasers for high-brightness applications[J]. IEEE Photonics Technol. Lett.,2008,20(13):1085-1087.
  • 加载中
计量
  • 文章访问数:  5692
  • HTML全文浏览量:  442
  • PDF下载量:  2837
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-11
  • 修回日期:  2010-07-13
  • 刊出日期:  2010-10-25

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!