Volume 11 Issue 2
Apr.  2018
Turn off MathJax
Article Contents
GUSEV Sviatoslav Igorevich, DEMCHENKO Petr S, CHERKASOVA Olga P, FEDOROV Vyacheslav I, KHODZITSKY Mikhail K. Influence of glucose concentration on blood optical properties in THz frequency range[J]. Chinese Optics, 2018, 11(2): 182-189. doi: 10.3788/CO.20181102.0182
Citation: GUSEV Sviatoslav Igorevich, DEMCHENKO Petr S, CHERKASOVA Olga P, FEDOROV Vyacheslav I, KHODZITSKY Mikhail K. Influence of glucose concentration on blood optical properties in THz frequency range[J]. Chinese Optics, 2018, 11(2): 182-189. doi: 10.3788/CO.20181102.0182

Influence of glucose concentration on blood optical properties in THz frequency range

doi: 10.3788/CO.20181102.0182
Funds:

the Government of Russian Federation 074-U01

More Information
  • Author Bio:

    GUSEV Sviatoslav Igorevich(1991-), PhD student, Department of Photonics and Optical Information Technology, ITMO University, Russia.His research interests are in terahertz time-domain spectroscopy, diabetes care, non-invasive glucose measuring, signal processing.E-mail:mail@gusev-spb.ru

    KHODZITSKY Mikhail(1984—), Chief of Terahertz Biomedicine Laboratory, Associate professor, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests are in terahertz photonics, metamaterials, biophotonics and terahertz spectroscopy. E-mail:khodzitskiy@yandex.ru

  • Corresponding author: KHODZITSKY Mikhail K, E-mail:khodzitskiy@yandex.ru
  • Received Date: 17 Dec 2017
  • Rev Recd Date: 28 Feb 2018
  • Publish Date: 01 Apr 2018
  • Non-invasive blood glucose sensing is still actual scientific task for more safe and comfort diabetes care. This article shows correlation between blood optical properties and its glucose concentration. The transmission spectra of whole blood have been studied by the time-domain THz spectroscopy in the frequency range from 0.3 to 0.5 THz. Biosamples were produced from the same person with the diabetes mellitus during a short time period after the insulin injection have been used. Frequency dispersions of blood optical properties are obtained. Based on frequency dispersions, the dependences of blood glucose concentrations with the refractive index and permittivity are presented. This work is a part of the complex investigation, which focuses on the development of a non-invasive glucose measuring technique. Registering dependences between blood glucose level and blood optical parameters allows for using the reflective spectroscopy techniques in future for non-invasive blood glucose level sensing.

     

  • loading
  • [1]
    NORTHAM L, BARANOSKI G. A novel first principles approach for the estimation of the sieve factor of blood samples[J]. Optics Express, 2010, 18:7456-7469. doi: 10.1364/OE.18.007456
    [2]
    REID C B, REESE G, GIBSON A P, et al.. Terahertz time-domain spectroscopy of human blood[J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3:363-367. doi: 10.1109/TTHZ.2013.2267414
    [3]
    TUCHIN V V. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis[M]. CRC Press, 2015.
    [4]
    POPESCU D P, SOWA M G. In vitro assessment of optical properties of blood by applying the extended Huygens-Fresnel principle to time-domain optical coherence tomography signal at 1300 nm[J]. Journal of Biomedical Imaging, 2008, 7:591618. http://www.ncbi.nlm.nih.gov/pubmed/18618002
    [5]
    YIM D, BARANOSKI G V, KIMMEL B W, et al.. A cell-based light interaction model for human blood[J]. Wiley Online Library, 2012, 31:845-854. http://www.researchgate.net/publication/264618183_A_Cell-Based_Light_Interaction_Model_for_Human_Blood
    [6]
    FITZGERALD A, BERRY E, ZINOV'EV N, et al.. Catalogue of human tissue optical properties at terahertz frequencies[J]. Journal of Biological Physics, 2003, 29:123-128. doi: 10.1023/A:1024428406218
    [7]
    GUSEV S, BOROVKOVA M, STREPITOV M, et al.. Blood optical properties at various glucose level values in THz frequency range[J]. European Conferences on Biomedical Optics, 2015:95372A. doi: 10.1117/12.2195959.full
    [8]
    GUSEV S I, BALBEKIN N, SEDYKH E, et al.. Influence of creatinine and triglycerides concentrations on blood optical properties of diabetics in THz frequency range[J]. Journal of Physics:Conference Series, 2016, 735:012088. doi: 10.1088/1742-6596/735/1/012088
    [9]
    CERIELLO A, COLAGIURI S. International diabetes federation guideline for management of postmeal glucose:a review of recommendations[J]. Diabetic Medicine, 2008, 25:1151-1156. doi: 10.1111/dme.2008.25.issue-10
    [10]
    CHERKASOVA O, NAZAROV M, SHKURINOV A. Noninvasive blood glucose monitoring in the terahertz frequency range[J]. Optical and Quantum Electronics, 2016, 48:1-12. doi: 10.1007/s11082-015-0274-3
    [11]
    CHERKASOVA O, NAZAROV M, BERLOVSKAYA E, et al.. Studying human and animal skin optical properties by terahertz time-domain spectroscopy[J]. Bulletin of the Russian Academy of Sciences:Physics, 2016, 80:479-483. doi: 10.3103/S1062873816040067
    [12]
    CHERKASOVA O, NAZAROV M, SMIRNOVA I, et al.. Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes[J]. Physics of Wave Phenomena, 2014, 22:185-188. doi: 10.3103/S1541308X14030042
    [13]
    SELYATITSKAYA V, PALCHIKOVA N, KUZNETSOVA N, et al.. Adrenocortical system activity at highly and lowly resistant to alloxandiabetogenic action rats[J]. Fundamental Research, 2011, 3:142-147. doi: 10.3103/S1541308X14030042
    [14]
    SELYATITSKAYA V G, PALCHIKOVA N A, KUZNETSOVA N V. Adrenocortical system activity in alloxan-resistant and alloxan-susceptible wistar rats[J]. Journal of Diabetes Mellitus, 2012, 2:165. doi: 10.4236/jdm.2012.22026
    [15]
    TSENG T F, YOU B, GAO H C, et al.. Pilot clinical study to investigate the human whole blood spectrum characteristics in the sub-THz region[J]. Optics Express, 2015, 23:9440-9451. doi: 10.1364/OE.23.009440
    [16]
    JEONG K, HUH Y M, KIM S H, et al.. Characterization of blood using terahertz waves[J]. Journal of Biomedical Optics, 2013, 18:107008-107008. doi: 10.1117/1.JBO.18.10.107008
    [17]
    ANGELUTS A, BALAKINA V, EVDOKIMOVM G, et al.. Characteristic responses of biological and nanoscale systems in the terahertz frequency range[J]. Quantum Electronics, 2014, 44:614. doi: 10.1070/QE2014v044n07ABEH015565
    [18]
    LARIN K V, ELEDRISI M S, MOTAMEDI M, et al.. Noninvasive blood glucose monitoring with optical coherence tomography:a pilot study in human subjects[J]. Diabetes Care, 2002, 25:2263-2267. doi: 10.2337/diacare.25.12.2263
    [19]
    TARR R V. Non-invasive blood glucose measurement system and method using stimulated raman spectroscopy: US, 5243983[P]. 1993-09-14.
    [20]
    THOMAS G H. Method and apparatus for non-invasive monitoring of blood glucose. US, 5119819[P]. 1992-06-09
    [21]
    POPOV A P, BYKOV A V, TOPPARI S, et al.. Glucose sensing in flowing blood and intralipid by laser pulse time-of-flight and optical coherence tomography techniques[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18:1335-1342. doi: 10.1109/JSTQE.2011.2175202
    [22]
    SMITH J. The Pursuit of Noninvasive Glucose[M]. 5th Edition. [S. l. ]: http://www.mendosa.com/noninvasive-glucose.pdf,2017.
    [23]
    SCHELLER M, DVRRSCHMIDT S F, STECHER M, et al.. Terahertz quasi-time-domain spectroscopy imaging[J]. Applied Optics, 2011, 50:1884. doi: 10.1364/AO.50.001884
    [24]
    BESPALOV V G, GORODETSKIǏ A, DENISYUK I Y, et al.. Methods of generating superbroad band terahertz pulses with femtosecond lasers[J]. Journal of Optical Technology, 2008, 5:636-642. http://www.researchgate.net/publication/249336946_Methods_of_generating_superbroadband_terahertz_pulses_with_femtosecond_lasers?ev=auth_pub
    [25]
    BESPALOV V G, GORODETSKY A A, GRACHEV Y V, et al.. Influence of THz broadband pulse radiation on some biotissues[J]. Proceedings of SPIE, 2009, 7547:754707. doi: 10.1117/12.855046
    [26]
    SHEFFIELD C A, KANE M P, BAKST G, et al.. Accuracy and precision of four value-added blood glucose meters:the Abbott Optium, the DDI Prodigy, the HDI True Track, and the HypoGuard Assure Pro[J]. Diabetes Technology & Therapeutics, 2009, 11:587-592. https://www.researchgate.net/publication/26822375_Accuracy_and_Precision_of_Four_Value-Added_Blood_Glucose_Meters_the_Abbott_Optium_the_DDI_Prodigy_the_HDI_True_Track_and_the_HypoGuard_Assure_Pro
    [27]
    BIESTER T, DANNE T, BLÄSIG S, et al.. Pharmacokinetic and prandial pharmacodynamic properties of insulin degludec/insulin aspart in children, adolescents, and adults with type 1 diabetes[J]. Pediatric Diabetes, 2016, 17:642-649. doi: 10.1111/pedi.2016.17.issue-8
    [28]
    BOGNER P, SIPOS K, LUDANY A, et al.. Steady-state volumes and metabolism-independent osmotic adaptation in mammalian erythrocytes[J]. European Biophysics Journal, 2002, 31:145-152. doi: 10.1007/s00249-001-0198-7
    [29]
    JAIN S K. Hyperglycemia can cause membrane lipid peroxidation and osmotic fragility in human red blood cells[J]. Journal of Biological Chemistry, 1989, 64:21340-21345. http://www.ncbi.nlm.nih.gov/pubmed/2592379
    [30]
    SON J-H. Prospects in Medical Applications of Terahertz Waves and Conclusions[M]. Terahertz Biomedical Science and Technology, CRC Press, 2014: 347-350.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views(1903) PDF downloads(369) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return