Volume 11 Issue 2
Apr.  2018
Turn off MathJax
Article Contents
GREBENCHUKOV Alexander N, ZAITSEV Anton D, KHODZITSKY Mikhail K. Optically controlled narrowband terahertz switcher based on graphene[J]. Chinese Optics, 2018, 11(2): 166-173. doi: 10.3788/CO.20181102.0166
Citation: GREBENCHUKOV Alexander N, ZAITSEV Anton D, KHODZITSKY Mikhail K. Optically controlled narrowband terahertz switcher based on graphene[J]. Chinese Optics, 2018, 11(2): 166-173. doi: 10.3788/CO.20181102.0166

Optically controlled narrowband terahertz switcher based on graphene

doi: 10.3788/CO.20181102.0166
Funds:

Government of Russian Federation grant 074-U01

More Information
  • Author Bio:

    GREBENCHUKOV Alexander(1990—), PhD student, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests focus on graphene-based tunable terahertz metamaterials and designing structures for superresolution. E-mail:grebenchukov_a@mail.ru

    ZAITSEV Anton(1995—), Undergraduate student, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests focus on graphene-based tunable terahertz metamaterials. E-mail:anleza@ya.ru

    KHODZITSKY Mikhail(1984—), Chief of Terahertz Biomedicine Laboratory, Associate professor, Department of Photonics and Optical Information Technology, ITMO University, Russia. His research interests focus on terahertz photonics, metamaterials, biophotonics and terahertz spectroscopy. E-mail:khodzitskiy@yandex.ru

  • Corresponding author: KHODZITSKY Mikhail K, E-mail:khodzitskiy@yandex.ru
  • Received Date: 14 Dec 2017
  • Rev Recd Date: 27 Jan 2018
  • Publish Date: 01 Apr 2018
  • This paper proposes an optically controlled terahertz switcher based on cross-shaped metal resonators metasurface covered by monolayer graphene. The spectral characteristics of proposed composite structure were calculated using the surface conductivity model of graphene and the finite element method. The modeling demonstrated the appearance of a narrowband resonant dip in the transmission spectrum with a modulation depth of 36.8% and a Q-factor of 250 after the optical pump intensity achieving to 0.2 W/mm2. In addition, the modulation depth of such a dip can be slightly tuned by varying value of the pump intensity. Thus, the design of the optically tunable terahertz switcher may contribute to the development of functional components for terahertz communication applications.

     

  • loading
  • [1]
    SONG H J, NAGATSUMA T. Present and future of terahertz communications[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1:256-263. doi: 10.1109/TTHZ.2011.2159552
    [2]
    JIANG Z, ZHANG Y, TAN Y W, et al.. Graphene in extremely high magnetic fields[J]. International Journal of Modern Physics B, 2007, 21:1123-1130. doi: 10.1142/S0217979207042549
    [3]
    BOLOTIN K I, SIKES K J, JIANG Z, et al.. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146:351-355. doi: 10.1016/j.ssc.2008.02.024
    [4]
    BONACCORSO F, SUN Z, HAZAN T, et al.. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4:611-622. doi: 10.1038/nphoton.2010.186
    [5]
    GRIGORENKO A N, POLINI M, NOVOSELOV K S. Graphene plasmonics[J]. Nature Photonics, 2012, 6:749-758. doi: 10.1038/nphoton.2012.262
    [6]
    KIM K S, ZHAO Y, JANG H, et al.. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457:706-710. doi: 10.1038/nature07719
    [7]
    RANA F. Graphene terahertz plasmon oscillators[J]. IEEE Transactions on Nanotechnology, 2008, 7:91-99. doi: 10.1109/TNANO.2007.910334
    [8]
    HE X J, LI T Y, WANG L, et al.. Electrically tunable terahertz wave modulator based on complementary metamaterial and graphene[J]. Journal of Applied Physics, 2014, 115:17B903. doi: 10.1063/1.4866079
    [9]
    YANG K, LIU S, AREZOOMANDAN S, et al.. Graphene-based tunable metamaterial terahertz filters[J]. Applied Physics Letters, 2014, 105:093105. doi: 10.1063/1.4894807
    [10]
    GAO W, SHU J, REICHEL K, et al.. High-contrast terahertz wave modulation by gated graphene enhanced by extraordinary transmission through ring apertures[J]. Nano Letters, 2014, 14:1242-1248. doi: 10.1021/nl4041274
    [11]
    LIN Y S, QIAN Y, MA F, et al.. Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators[J]. Applied Physics Letters, 2013, 102:111908. doi: 10.1063/1.4798244
    [12]
    LEE S H, CHOI M, KIM T T, et al.. Switching terahertz waves with gate-controlled active graphene metamaterials[J]. Nature Materials, 2012, 11:936-941. doi: 10.1038/nmat3433
    [13]
    KAKENOV N, BALCI O, POLAT E O, et al.. Broadband terahertz modulators using self-gated graphene capacitors[J]. JOSA B, 2015, 32:1861-1866. doi: 10.1364/JOSAB.32.001861
    [14]
    LIANG G, HU X, YU X, et al.. Integrated terahertz graphene modulator with 100% modulation depth[J]. ACS Photonics, 2015, 2:1559-1566. doi: 10.1021/acsphotonics.5b00317
    [15]
    LAO J, TAO J, WANG Q J, et al.. Tunable graphene-based plasmonic waveguides:nanomodulators and nano attenuators[J]. Laser Photonics Rev., 2014, 8:569-574. doi: 10.1002/lpor.v8.4
    [16]
    WEIS P, GARCIA-POMAR J L, HOH M, et al.. Spectrally wide-band terahertz wave modulator based on optically tuned graphene[J]. ACS Nano, 2012, 6:9118-9124. doi: 10.1021/nn303392s
    [17]
    WEIS P, GARCIA-POMAR J L, RAHM M. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene[J]. Optics Express, 2014, 22:8473-8489. doi: 10.1364/OE.22.008473
    [18]
    LI Q, TIAN Z, ZHANG X, et al.. Dual control of active graphene silicon hybrid metamaterial devices[J]. Carbon, 2015, 90:146-153. doi: 10.1016/j.carbon.2015.04.015
    [19]
    CHEN X Y, TIAN Z. Recent progress in terahertz dynamic modulation based on graphene[J]. Chinese Optics, 2017, 10:86-97.(in Chinese) doi: 10.3788/co.
    [20]
    LUO S, WANG Y, TONG X, et al.. Graphene-based optical modulators[J]. Nanoscale Research Letters, 2015, 10:199. doi: 10.1186/s11671-015-0866-7
    [21]
    REN L, ZHANG Q, YAO J, et al.. Terahertz and infrared spectroscopy of gated large-area graphene[J]. Nano Letters, 2012, 12:3711-3715. doi: 10.1021/nl301496r
    [22]
    HANSON G W. Dyadic Greens functions and guided surface waves on graphene[J]. Journal of Applied Physics, 2006, 103:064302. https://arxiv.org/pdf/cond-mat/0701205v2.pdf
    [23]
    WINNERL S, ORLITA M, PLOCHOCKA P, et al.. Carrier relaxation in epitaxial graphene photoexcited near the Dirac point[J]. Physical Review Letters, 2011, 107:237401. doi: 10.1103/PhysRevLett.107.237401
    [24]
    FALKOVSKY L A. Optical properties of graphene[J]. Journal of Physics:Conference Series, 2008, 129:012004. doi: 10.1088/1742-6596/129/1/012004
    [25]
    DAWLATY J M, SHIVARAMAN S, CHANDRASHEKHAR M, et al.. Measurement of ultrafast carrier dynamics in epitaxial graphene[J]. Applied Physics Letters, 2008, 92:042116. doi: 10.1063/1.2837539
    [26]
    RYZHⅡ V, RYZHⅡ M, OTSUJI T. Negative dynamic conductivity of graphene with optical pumping[J]. Journal of Applied Physics, 2007, 101:083114. doi: 10.1063/1.2717566
    [27]
    MAK K F, SFEIR M Y, WU Y, et al.. Measurement of the optical conductivity of graphene[J]. Physical Review Letters, 2008, 101:196405. doi: 10.1103/PhysRevLett.101.196405
    [28]
    RANA F, GEORGE P A, STRAIT J H, et al.. Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene[J]. Physical Review B, 2009, 79:115447. doi: 10.1103/PhysRevB.79.115447
    [29]
    LEWIS R A. A review of terahertz sources[J]. Appl. Phys. D, 2014, 47:374001. doi: 10.1088/0022-3727/47/37/374001
    [30]
    FERRARO A, ZOGRAFOPOULOS D C, CAPUTO R, et al.. Broadand narrow-line terahertz filtering in frequency-selective surfaces patterned on thin low-loss polymer substrates[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23:1-8. https://www.researchgate.net/profile/Antonio_Ferraro
    [31]
    KE S, WANG B, HUANG H, et al.. Plasmonic absorption enhancement in periodic cross-shaped graphene arrays[J]. Optics Express, 2015, 23:8888-8900. doi: 10.1364/OE.23.008888
    [32]
    FERRARO A, ZOGRAFOPOULOS D C, CAPUTO R, et al.. Angle resolved and polarization-dependent investigation of cross-shaped frequency selective surface terahertz filters[J]. Applied Physics Letters, 2017, 11:0141107. doi: 10.1021/acs.jpcc.6b11321
    [33]
    ANDRYIEUSKI A, LAVRINENKO A V. Graphene metamaterials based tunable terahertz absorber:effective surface conductivity approach[J]. Optics Express, 2013, 7:9144-9155. https://www.researchgate.net/profile/Andrei_Andryieuski/publication/236188522_Graphene_metamaterials_based_tunable_terahertz_absorber_Effective_surface_conductivity_approach/links/53cfdb630cf25dc05cfb2ee4.pdf
    [34]
    HE X, ZHONG X, LIN F, et al.. Investigation of graphene assisted tunable terahertz metamaterials absorber[J]. Optical Materials Express, 2016, 6:331-342. doi: 10.1364/OME.6.000331
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(2346) PDF downloads(360) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return