留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铝合金表面激光沉积AlCrFeCoNiCu涂层的组织及耐蚀性能

李彦洲 石岩

李彦洲, 石岩. 铝合金表面激光沉积AlCrFeCoNiCu涂层的组织及耐蚀性能[J]. 中国光学(中英文), 2019, 12(2): 344-354. doi: 10.3788/CO.20191202.0344
引用本文: 李彦洲, 石岩. 铝合金表面激光沉积AlCrFeCoNiCu涂层的组织及耐蚀性能[J]. 中国光学(中英文), 2019, 12(2): 344-354. doi: 10.3788/CO.20191202.0344
LI Yan-zhou, SHI Yan. Microstructure and corrosion resistance of AlCrFeCoNiCu high-entropy coating by laser deposition on an aluminum alloy[J]. Chinese Optics, 2019, 12(2): 344-354. doi: 10.3788/CO.20191202.0344
Citation: LI Yan-zhou, SHI Yan. Microstructure and corrosion resistance of AlCrFeCoNiCu high-entropy coating by laser deposition on an aluminum alloy[J]. Chinese Optics, 2019, 12(2): 344-354. doi: 10.3788/CO.20191202.0344

铝合金表面激光沉积AlCrFeCoNiCu涂层的组织及耐蚀性能

doi: 10.3788/CO.20191202.0344
基金项目: 

国家重点研发计划"增材制造与激光制造"专项 22017YFB1104601

吉林省科技厅重点科技攻关项目 220170204065GX

吉林省科技厅重点科技攻关项目 20180201063GX

详细信息
    作者简介:

    李彦洲(1988-), 男, 吉林吉林人, 博士研究生, 讲师, 2014年于长春工业大学获得硕士学位, 现为长春理工大学机电工程学院博士研究生, 主要从事激光加工技术方面的研究。E-mail:2721589336@qq.com

    石岩(1972-), 男, 吉林长春人, 教授, 博士生导师, 1995年于长春光学精密机械学院获得学士学位, 2002年于长春光学精密机械学院获得硕士学位, 2007年于长春理工大学获得博士学位, 现为长春理工大学激光加工技术研究中心主任, 主要从事激光加工技术方面的研究。E-mail:shiyan@cust.edu.cn

  • 中图分类号: TG141.1

Microstructure and corrosion resistance of AlCrFeCoNiCu high-entropy coating by laser deposition on an aluminum alloy

Funds: 

the National Program of Key Research in Additive Manufacturing and Laser Manufacturing of China 22017YFB1104601

the financial aids from the Scientific and Technological Planning Project of Jilin Province 220170204065GX

the financial aids from the Scientific and Technological Planning Project of Jilin Province 20180201063GX

More Information
  • 摘要: 为了提高铝合金表面的力学和耐腐蚀性能,利用激光沉积技术在铝合金表面制备了AlCrFeCoNiCu高熵合金涂层。使用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱分析仪(EDS)、显微硬度计和电化学工作站,研究了涂层的相结构、微观组织、元素分布、硬度及耐腐蚀性能。结果表明,涂层与基材结合良好,基材中Al元素在熔池搅拌作用下上浮,使沉积层呈FCC相和BCC相;显微组织为典型的枝晶结构,Cu元素在枝晶间富集;涂层平均显微硬度为528HV0.2,约是基材的5倍;AlCrFeCoNiCu涂层在3.5% NaCl溶液中的腐蚀特征为点蚀和晶间腐蚀,耐腐蚀性优于基材。激光沉积制备的AlCrFeCoNiCu高熵合金可以改善铝合金表面性能。

     

  • 图 1  激光沉积原理示意图

    Figure 1.  Schematic diagram of laser deposition

    图 2  FeCrCoNiCu粉末与涂层XRD图谱

    Figure 2.  XRD patterns of FeCrCoNiCu powder and the coating

    图 3  AlCrFeCoNiCu涂层横截面SEM图.(a)涂层宏观形貌;(b)沉积层顶部; (c)沉积层中部; (d)沉积层底部

    Figure 3.  SEM images of cross-section of AlCrFeCoNiCu coating. (a)Overall morphology of the coating, (b)top zone of the cladding, (c)middle zone of the cladding, (d)bottom zone of the cladding

    图 4  涂层的显微硬度分布

    Figure 4.  Microhardness distribution of the coating

    图 5  AlCrFeCoNiCu涂层和基材在3.5%NaCl溶液中的动电位极化曲线

    Figure 5.  Potentiodynamic polarization curves of AlCrFeCoNiCu coating and the substrate in 3.5%NaCl solution

    图 6  AlCrFeCoNiCu涂层和基材在3.5%NaCl溶液中动电位极化后的SEM图. (a)基材形貌, (b)AlCrFeCoNiCu涂层形貌, (c)图(b)中A区域的局部放大图, (d)图(b)中B区域的局部放大图

    Figure 6.  SEM images of AlCrFeCoNiCu coating and the substrate after polarization tests in 3.5%NaCl solution. (a)Morphology of the substrate, (b)morphology of AlCrFeCoNiCu coating, (c)magnification of region A in Fig. 6(b), (d)magnification of region B in Fig. 6(b)

    图 7  AlCrFeCoNiCu涂层和基材在3.5%NaCl溶液中Nyquist曲线

    Figure 7.  Nyquist plots of AlCrFeCoNiCu coating and the substrate in 3.5%NaCl solution

    图 8  AlCrFeCoNiCu涂层和基材在3.5%NaCl溶液中的波特图

    Figure 8.  Bolt plots of AlCrFeCoNiCu coating and the substrate in 3.5%NaCl solution

    图 9  电化学阻抗谱的等效电路图

    Figure 9.  Equivalent circuit of EIS

    表  1  AlxCrFeCoNiCu(x=0, 0.5, 1, 1.5, 2)的混合熵、混合焓、原子半径比、价电子浓度比、电负性差

    Table  1.   Parameters of δ, Hmix, ΔSmix, VEC and χ for AlxCrFeCoNiCu(x=0, 0.5, 1, 1.5, 2)

    Alloys δ/% ΔHmix/(kJ·mol-1) ΔSmix/(J·K-1·mol-1) VBC χ
    FeCoNiCrCu 1.07 3.2 13.3 8.80 0.12
    Al0.5CrFeCoNiCu 3.90 -1.52 14.7 8.27 0.13
    AlCrFeCoNiCu 4.82 -4.87 14.9 7.83 0.14
    Al1.5CrFeCoNiCu 5.48 -7.05 14.8 7.46 0.14
    Al2 CrFeCoNiCu 5.98 -8.65 14.5 7.14 0.15
    下载: 导出CSV

    表  2  图 3中各区域的EDS结果(原子分数)

    Table  2.   EDS results of each area in Fig. 3(at/%)

    Areas Al Cr Fe Co Ni Cu
    Nominal 0 20 20 20 20 20
    1(Dendrite) 10.94 17.37 17.37 19.41 19.21 15.7
    1(Interdentic) 8.78 16.30 17.73 19.73 16.21 21.25
    2(Dendrite) 10.36 17.81 17.85 17.54 17.75 18.69
    2(Interdendritic) 9.68 17.2 17.27 16.53 17.31 22.01
    3(Dendrite) 13.26 19.25 17.58 19.15 15.23 15.53
    3(Interdendritic) 11.21 17.23 15.21 17.21 16.26 20.88
    下载: 导出CSV

    表  3  AlCrFeCoNiCu涂层和基材在3.5%NaCl溶液中的电化学参数

    Table  3.   Eletrochemical parameters of AlCrFeCoNiCu coating and the substrate in 3.5%NaCl solution

    Solution Samples Ecorr/V Icorr/μA
    3.5%NaCl AlCrFeCoNiCu coating
    Substrate
    -1.13
    -1.40
    9.22
    35.4
    下载: 导出CSV

    表  4  图 6中各点的EDS结果(原子分数)

    Table  4.   EDS results of each point in Fig. 6(at%)

    Areas Al Cr Fe Co Ni Cu
    1(Dendrite) 8.7 20.63 19.27 19.42 19.59 12.39
    1(Interdentic) 10.96 15.31 18.75 19.76 18.01 17.21
    下载: 导出CSV

    表  5  AlCrFeCoNiCu涂层在3.5%NaCl溶液中的等效电路参数

    Table  5.   Equivalent circuit parameters of AlCrFeCoNiCu coating in 3.5%NaCl solution

    Rs/(kΩ·cm2) CPE1/(μF·cm-2) n Rc/(kΩ·cm2)
    HEA coating 3.12 17.2 0.892 2 982
    下载: 导出CSV
  • [1] 秦国华, 杨扬, 李强, 等.7075铝合金厚板多道次蛇形热轧的分析与预测[J].光学 精密工程, 2017, 25(4):437-446. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201704020

    QIN G H, YANG Y, LI Q, et al.. Analysis and prediction of muti-pass sanke hot rolling for 7075 aluminum alloy thick plate[J]. Opt. Precision Eng., 2017, 25(4):437-446.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201704020
    [2] 柴伟伟, 陈清华, 李琳红, 等.大功率LED灯珠与散热器直焊结构散热效果分析[J].发光学报, 2011, 32(11):1171-1175. http://d.old.wanfangdata.com.cn/Periodical/fgxb201111015

    CHAI W W, CHEN Q H, LI L H, et al.. Heat dissipation analysis of high power LED connected to copper coated heat sink by soldering[J]. Chinese Journal of Luminescence, 2011, 32(11):1171-1175.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201111015
    [3] BUCHWALDER A, DALKE A, SPIES H J, et al.. Studies of technological parameters influencing the nitriding behavior of spray-formed Al alloys[J]. Surface & Coatings Technology, 2014, 258(3):1259-1259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=777e3bb7fe85620759d112d7cff9c846
    [4] GUAN J, WANG J W, ZHANG D W. Nickel electroplating on copper pre-activated Al alloy in the electrolyte containing PEG(1000) as an additive[J]. Applied Physics a-Materials Science & Processing, 2018, 124(6):7-25. doi: 10.1007/s00339-018-1861-5
    [5] 薛军, 冯建涛, 马长征, 等.激光冲击强化对激光增材TC4钛合金组织和抗氧化性的影响[J].中国光学, 2018, 11(2):198-205. http://www.chineseoptics.net.cn/CN/abstract/abstract9560.shtml

    XUE J, FENG J T, MA CH ZH, et al.. Influence of laser shock peening on microstructure and oxidation resistance of laser additive manufactured TC4 titanium alloy[J]. Chinese Optics, 2018, 11(2):198-205.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9560.shtml
    [6] 马琛, 马壮, 高丽红, 等.激光对鳞片石墨改性酚醛树脂涂层的损伤机理[J].中国光学, 2017, 10(2):249-255. http://www.chineseoptics.net.cn/CN/abstract/abstract9473.shtml

    MA CH, MA ZH, GAO L H, et al.. Laer damage mechanism of flake graphite modified phenolic resin coating[J]. Chinese Optics, 2017, 10(2):249-255.(in Chinese) http://www.chineseoptics.net.cn/CN/abstract/abstract9473.shtml
    [7] 刘洪喜, 李正学, 张晓伟, 等.热处理条件下激光原位合成高铌Ti-Al金属间化合物复合涂层的微结构特征[J].光学 精密工程, 2017, 25(6):1477-1485. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201706011

    LIU H X, LI ZH X, ZHANG X W, et al.. Microstructure characteristics of laser in situ synthesis high Niobium Ti-Al intermetallic compound coating under heat treatment[J]. Opt. Precision Eng., 2017, 25(6):1477-1485.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201706011
    [8] 朱德亮, 陈吉星, 曹培林, 等.利用脉冲激光沉积法制备高Mg掺杂的六方相MgZnO薄膜[J].发光学报, 2010, 31(2):223-226. http://d.old.wanfangdata.com.cn/Periodical/fgxb201002015

    ZHU D L, CHEN J X, CAO P L, et al.. Heavily Mg-depoded hexagonal phase thin ZnO films prepared by pulsed laser depositon[J]. Chinese Journal of Luminescence, 2010, 31(2):223-226.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/fgxb201002015
    [9] 王成磊, 高原, 张光耀.CeO2对铝合金表面激光熔覆增材制造Ni60合金层组织及耐蚀性影响[J].稀有金属材料与工程, 2017, 46(8):2306-2312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsclygc201708047

    WANG CH L, GAO Y, ZHANG G Y. Effect of CeO2 addition on interface structure and corrosion resistance of laser cladding additive manufactured Ni60 alloy layers on the surface of Al alloys[J]. Rare Metal Materials and Engineering, 2017, 46(8):2306-2312.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsclygc201708047
    [10] HE L, TAN Y F, WANG X L, et al.. Tribological properties of laser cladding TiB2 particles reinforced Ni-base alloy composite coatings on aluminum alloy[J]. Rare Metals, 2015, 34(11):789-796. doi: 10.1007/s12598-014-0299-y
    [11] TSAI M H, YEH J W. High-entropy alloys:a critical review[J]. Materials Research Letters, 2014, 2(3):107-123. doi: 10.1080/21663831.2014.912690
    [12] SHU F Y, WU L, ZHAO H Y, et al.. Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating[J]. Materials Letters, 2018, 211(10):235-238. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=aed2f4b71b6c869339f5017ee9ed8339
    [13] GUO Y X, LIU Q B, ZHOU F. Microstructure and properties of Fe5Cr5SiTiCoNbMoW coating by laser cladding[J]. Surface Engineering, 2018, 34(4):283-288. doi: 10.1080/02670844.2016.1213784
    [14] MENG G H, LIN X, XIE H, et al.. Reinforcement and substrate interaction in laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites[J]. Journal of Alloys and Compounds, 2016, 672(10):660-667. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=670043617edb04d9a1aa527c553d627c
    [15] SHON Y K, JOSHI S S, KATAKAM S, et al.. Laser additive synthesis of high entropy alloy coating on aluminum:corrosion behavior[J]. Materials Letters, 2015, 142(3):122-125. http://www.sciencedirect.com/science/article/pii/S0167577X14021648
    [16] NI C, SHI Y, LIU J, et al.. Characterization of Al0.5FeCu0.7NiCoCr high-entropy alloy coating on aluminum alloy by laser cladding[J]. Optics and Laser Technology, 2018, 105(3):257-263.
    [17] SHI Y, NI C, LIU J, et al.. Microstructure and properties of laser clad high-entropy alloy coating on aluminium[J]. Materials Science and Technology, 2018, 34(10):1239-1245. doi: 10.1080/02670836.2018.1444921
    [18] KATAKAM S, JOSHI S S, MRIDHA S, et al.. Laser assisted high entropy alloy coating on aluminum:microstructural evolution[J]. Journal of Applied Physics, 2014, 116(10):6-25. https://www.researchgate.net/publication/265689497_Laser_assisted_high_entropy_alloy_coating_on_aluminum_Microstructural_evolution
    [19] HUANG C, ZHANG Y Z, VILAR R, et al.. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti-6Al-4V substrate[J]. Materials & Design, 2012, 41(3):338-343. http://www.sciencedirect.com/science/article/pii/S0261306912002920
    [20] SINGH A K, SUBRAMANIAM A. On the formation of disordered solid solutions in multi-component alloys[J]. Journal of Alloys & Compounds, 2014, 587(7):113-119. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c9c12db29f283acbe95ae60dcf55f2db
    [21] ZHANG Y Z Y, LIN J P. Solid-solution phase formation rules for multi-component alloys[J]. Adv Eng Mater, 2008, 10(6):534-538. doi: 10.1002/(ISSN)1527-2648
    [22] GUO S, NG C, LU J, et al.. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys[J]. Journal of Applied Physics, 2011, 109(10):103505. doi: 10.1063/1.3587228
    [23] FANG S C, CHEN W P, FU Z Q. Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering[J]. Materials & Design, 2014, 54(7):973-979. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e273b4170675f8a319c30cfdae75bdce
    [24] GUO S, LIU C T. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase[J]. Progress in Natural Science-Materials International, 2011, 21(6):433-446. doi: 10.1016/S1002-0071(12)60080-X
    [25] SUN Y N, CHEN P, LIU L H, et al.. Local mechanical properties of AlxCoCrCuFeNi high entropy alloy characterized using nanoindentation[J]. Intermetallics, 2018, 93(5):85-88. http://www.sciencedirect.com/science/article/pii/S0966979517308245
    [26] TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Mater Trans, 2005, 46(12):2817-2829. doi: 10.2320/matertrans.46.2817
    [27] ZHANG S, WU C L, ZHANG C H, et al.. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance[J]. Opt. Laser Technol., 2016, 84(3):23-31. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e461ddb463c40cb8b5544583ccdf645a
    [28] 曹楚南.腐蚀电化学原理[M].北京:化学工业出版社, 2008.

    CAO CH N. Principles of Electrochemistry Corrosion[M]. Beijing:Chemical Industry Press, 2006.(in Chinese)
    [29] 王淼, 刘强, 张亚雄, 等.6061-T6铝合金多道搭接FSP腐蚀性能[J].材料研究学报, 2015, 29(8):589-594. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clyjxb201508005

    WANG M, LIU Q, ZHANG Y X, et al.. Corrosion property of Al-alloy 6061-T6 processed by multipass friction stir processing[J]. Chinese Journal of Materials Research, 2015, 29(8):589-594.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=clyjxb201508005
    [30] 范丽, 陈海龑, 董耀华, 等.激光熔覆铁基合金涂层在HCl溶液中的腐蚀行为[J].金属学报, 2018, 54(7):1019-1030. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsxb201807007

    FAN L, CHEN H H, DONG Y H, et al.. Corrosion behavior of Fe-based laser cladding coating in hydrochloric acid solutions[J]. Acta Metallurgica Sinica, 2018, 54(7):1019-1030.(in Chinese) http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsxb201807007
    [31] PANDA B, BALASUBRAMANIAM R, DWIVEDI G. On the corrosion behaviour of novel high carbon rail steels in simulated cyclic wet-dry salt fog conditions[J]. Corrosion Science, 2008, 50(6):101-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0b396044e134755604791db16588c117
    [32] 曹楚南, 张鉴清.电化学阻抗谱导论[M].北京:科学出版社, 2002.

    CAO C N, ZHANG J Q. An Introduction to Electrochemical Impedance Spectroscopy[M]. Beijing:Science Press, 2002.(in Chinese)
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  3268
  • HTML全文浏览量:  1409
  • PDF下载量:  225
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-29
  • 修回日期:  2019-01-09
  • 刊出日期:  2019-04-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!