留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型有机晶体及超宽带太赫兹辐射源研究进展

徐德刚 朱先立 贺奕焮 王与烨 姚建铨

徐德刚, 朱先立, 贺奕焮, 王与烨, 姚建铨. 新型有机晶体及超宽带太赫兹辐射源研究进展[J]. 中国光学(中英文), 2019, 12(3): 535-558. doi: 10.3788/CO.20191203.0535
引用本文: 徐德刚, 朱先立, 贺奕焮, 王与烨, 姚建铨. 新型有机晶体及超宽带太赫兹辐射源研究进展[J]. 中国光学(中英文), 2019, 12(3): 535-558. doi: 10.3788/CO.20191203.0535
XU De-gang, ZHU Xian-li, HE Yi-xin, WANG Yu-ye, YAO Jian-quan. Advances in organic nonlinear crystals and ultra-wideband terahertz radiation sources[J]. Chinese Optics, 2019, 12(3): 535-558. doi: 10.3788/CO.20191203.0535
Citation: XU De-gang, ZHU Xian-li, HE Yi-xin, WANG Yu-ye, YAO Jian-quan. Advances in organic nonlinear crystals and ultra-wideband terahertz radiation sources[J]. Chinese Optics, 2019, 12(3): 535-558. doi: 10.3788/CO.20191203.0535

新型有机晶体及超宽带太赫兹辐射源研究进展

doi: 10.3788/CO.20191203.0535
基金项目: 

国家973计划 2015CB755403

国家重点研发专项 2016YFC0101001

国家自然科学基金 61775160

国家自然科学基金 61771332

国家自然科学基金 61471257

中国博士后科学基金特别资助 2016M602954

重庆市博士后科研项目特别资助 Xm2016021

详细信息
    作者简介:

    徐德刚(1974-), 男, 山东青岛人, 教授, 博士生导师, 2005年于天津大学获得博士学位, 现为天津大学精密仪器与光电子工程学院教授, 主要从事全固态激光技术、太赫兹技术及其应用方面的研究。E-mail:xudegang@tju.edu.cn

  • 中图分类号: O437

Advances in organic nonlinear crystals and ultra-wideband terahertz radiation sources

Funds: 

the National Basic Research Program of China(973) 2015CB755403

the National Key Research and Development Projects 2016YFC0101001

National Natural Science Foundation of China 61775160

National Natural Science Foundation of China 61771332

National Natural Science Foundation of China 61471257

China Postdoctoral Science Foundation 2016M602954

Postdoctoral Science Foundation of Chongqing Xm2016021

More Information
  • 摘要: 非线性光学晶体是非线性光学频率变换技术中的核心器件。近些年,为进一步提高基于非线性光学频率变换技术产生太赫兹波的输出能量、转换效率,拓宽产生太赫兹波的带宽,多种新型有机晶体得以发展,并凭借其更加出色的非线性光学性质,成为产生太赫兹波的理想材料。本文按照晶体类型介绍了目前可产生THz波的多种有机晶体的性质,并总结了基于多种有机晶体的超宽带太赫兹辐射源的国内外研究进展,同时结合THz光谱检测技术的应用需求分析了基于有机晶体宽带THz辐射源的发展趋势以及所面临的关键科学问题。

     

  • 图 1  (a) DAST分子式图;(b)DAST单晶结构图[25]

    Figure 1.  (a)Molecular diagram of DAST; (b)structure diagram of DAST single crystal[25]

    图 2  DAST晶体红外色散曲线[26]

    Figure 2.  Infrared dispersion curves of DAST crystal[26]

    图 3  (a) OH1分子式图;(b)OH1单晶结构图[39]

    Figure 3.  (a)Molecular diagram of OH1 crystal; (b)structure diagram of OH1 single crystal[39]

    图 4  基于双波长钛宝石激光器泵浦DAST晶体的THz辐射源[47]

    Figure 4.  THz radiation source pumped by dual-wavelength Ti:Sapphire laser based on DAST crystal[47]

    图 5  (a) 双波长KTP-OPO泵浦有机晶体DAST差频输出THz波实验系统;(b)DAST晶体差频输出谱[7]

    Figure 5.  (a)Experimental set-up of THz source based on DAST crystal pumped by dual-wavelength KTP-OPO; (b)THz output spectroscopy of DAST crystal[7]

    图 6  (a) Cherenkov相位匹配示意图[57];(b)Si棱镜耦合Cherenkov相位匹配中DAST晶体示意图[57];(c)基于Cherenkov相位匹配的DAST晶体THz辐射源[58];(d)Cherenkov相位匹配与传统共线相位匹配的输出谱[58]

    Figure 6.  (a)Diagram of Cherenkov phase matching[57]; (b)diagram of DAST crystal in Si prism-coupled Cherenkov phase matching[57]; (c)experimental set-up of THz source based on DAST crystal under Cherenkov phase matching condition[58]; (d)output spectra of Cherenkov phase matching and traditional collinearity phase matching[58]

    图 7  (a) 基于双波长可调谐连续光纤激光器泵浦DAST晶体产生THz波实验系统[61];(b)基于Nd:YAG双波长激光器泵浦DAST晶体产生THz波实验系统[62];(c)基于非共线相位匹配BBO-OPO泵浦DAST晶体产生THz波实验系统[64]

    Figure 7.  (a)Experimental set-up of THz waves generated from DAST pumped by tunable continuous fiber lasers[61]; (b)experimental set-up of THz waves generated from DAST pumped by dual-wavelength Nd:YAG laser; (c)experimental set-up of THz waves generated from DAST crystal pumped by BBO-OPO under non-collinear phase matching condition[64]

    图 8  (a) DASC薄膜输出特性与DAST晶体以及ZnTe晶体输出特性比较[69]; (b)DAST-DASC共晶THz输出谱[28]; (c)BDAS-TP晶体的THz输出光谱[31]

    Figure 8.  (a)Comparison of output properties of DASC film, DAST crystal and ZnTe crystal[69]; (b)THz output spectra based on DAST-DASC crystals[28]; (c)THz output spectra based on BDAS-TP crystals[31]

    图 9  (a) DSTMS晶体红外波段色散特性[70];(b)DSTMS晶体红外吸收特性[70];(c)DSTMS晶体a轴在THz波段色散和吸收特性[71];(d)DAST与DSTMS晶体光整流产生THz波最佳长度计算[71]

    Figure 9.  (a)Infrared dispersion characteristics of DSTMS crystals[70]; (b)infrared absorption characteristics of DSTMS crystals[70]; (c)dispersion and absorption characteristics of the a-axis of the DSTMS crystal in the THz band[71]; (d)comparison of maximum effective length of THz waves generated by DAST and DSTMS crystal in THz genenration based on optical rectification[71]

    图 10  (a) PCS-DSTMS晶体实物图[73];(b)基于PCS-DSTMS晶体产生THz波的能量分布[73];(c)基于DSTMS晶体差频输出超宽带可调谐THz波[74]

    Figure 10.  (a)Physical map of PCS-DSTMS crystals[73]; (b)energy distribution of THz waves based on PCS-DSTMS crystals[73]; (c)ultra-wideband tunable THz waves based on DSTMS crystals different frequency technology[74]

    图 11  (a) 双波长频率梳泵浦有机晶体DSTMS产生可调谐THz输出;(b)THz输出谱[79]

    Figure 11.  (a)Narrowband THz experimental set-up based on DSTMS crystal pumped by dual-wavelength frequency comb; (b)Fourier transformation of tunable THz wave[79]

    图 12  (a) BBO-OPO泵浦有机晶体DAST以及BNA实现超宽带THz平坦输出;(b)DAST-BNA补偿THz输出谱[83]

    Figure 12.  (a)Ultra-wideband THz flat output realized using BNA and DAST crystal pumped by a dual-wavelength BBO-OPO; (b)THz output spectra of compensated DAST-BNA crystal[83]

    图 13  (a) 光整流效应激发BNA晶体产生THz波中剩余泵浦频移现象;(b)THz能量与泵浦脉宽之间的关系;(c)THz转换效率与泵浦中心波长之间的关系[86]

    Figure 13.  (a)Residual pump frequency shift in the THz waves generated by the BNA crystals excited by optics rectification technology; (b)relationship between the THz energy and the pump pulse width; (c)relationship between the THz conversion efficiency and pump center wavelength[86]

    图 14  基于DAST晶体以及OH1晶体光整流产生THz波时域(a)与频域(b)图[88]

    Figure 14.  Time-domain (a) and frequency-domain (b) plots of THz waves generated by optic rectification technology based on DAST crystals and OH1 crystals[88]

    图 15  不同泵浦波长下OH1晶体差频产生的THz波曲线[89]

    Figure 15.  Output spectra of THz waves generated by OH1 crystal pumped at different pump wavelengths[89]

    图 16  不同温度下OH1晶体的吸收系数变化以及光整流产生的THz脉冲频谱图[90]

    Figure 16.  Absorption coefficient change of OH1 crystals at different temperatures and the THz output spectra of THz pulse generated by optical rectification[90]

    图 17  (a) 国产有机晶体OH1差频产生超宽带可调谐THz波中级联差频;(b)多光子吸收过程[94]

    Figure 17.  (a)Cascading effects observed in home-made OH1 crystal in DFG; (b)multiphoton absorption process observed in OH1 crystal[94]

    图 18  (a) HMQ-T晶体a轴以及c轴在THz波段的色散特性曲线;(b)HMQ-T晶体a轴以及c轴在THz波段的吸收特性曲线[34]

    Figure 18.  (a)THz dispersion characteristics of the HMQ-T crystal in a-axis and c-axis; (b)THz absorption characteristics of the HMQ-T crystal in a-axis and c-axis[34]

    图 19  (a) 不同泵浦波长泵浦HMQ-TMS晶体产生宽带THz脉冲光谱;(b)HMQ-TMS晶体的相干长度[98]

    Figure 19.  (a)Broadband THz spectra generated in HMQ-TMS crystal pumped by different wavelengths; (b)coherence lengths in HMQ-TMS crystal[98]

    图 20  (a) fs激光泵浦HMQ-TMS晶体产生中心波长可调谐的THz波实验装置图;(b)中心波长可调谐的THz频谱图[99]

    Figure 20.  (a)Experimental set-up of THz waves with central wavelength tunable generated by fs laser pumping HMW-TMS; (b)Fourier transformation of the center wavelength tunable THz wave[99]

    表  1  离子型晶体DAST、DSTMS、HMQ-T、HMQ-TMS、HMB-TMS的性质[24, 28, 34-36]

    Table  1.   Properties of ionic crystals DAST, DSTMS, HMQ-T, HMQ-TMS, HMB-TMS

    吡啶盐体系 喹啉体系 苯并噻唑体系
    晶体 DAST DSTMS HMQ-T HMQ-TMS HMB-TMS
    化学式 C23H26N2O3S C25H30N2O3S C26H25NO5S C28H29NO5S C25H27NO5S2
    晶系 单斜 单斜 单斜 单斜 单斜
    空间群 Cc Cc Pn Pn Pn
    点群 m m m m m
    熔点(℃) 256 258 273 257 257
    水溶性 不溶 不溶 不溶
    下载: 导出CSV

    表  2  分子型晶体OH1、BNA的性质[42, 44-45]

    Table  2.   Properties of nonionic molecular crystals OH1 and BNA

    晶体 OH1 BNA
    化学式 C19H18N2O C14H14N2O2
    晶系 正交 正交(亚稳态) 单斜(稳定态)
    空间群 Pna21 Pna21(C2V9) P21/c(C2h5)
    a(Å) 15.441 3 7.327 3 16.457
    b(Å) 10.998 8 21.386 7.131 9
    c(Å) 9.569 9 8.084 5 20.992
    Z 4 4 8
    熔点(℃) 212 106
    NLO系数 d33=285 pm/V@1 300 nm d33=234 pm/V@1 064 nm
    下载: 导出CSV

    表  3  基于洛伦兹模型拟合DAST晶体色散方程的相关参数[56]

    Table  3.   Fit parameters of DAST dispersion function by Lorentz osciliator model[56]

    DAST晶体aεEL=5.48
    Ω/2π εSTj γj
    1.1 0.79 0.39
    3.1 0.15 4.2
    5.2 0.03 1.9
    7.1 0.16 11
    8.4 0.02 0.85
    11 0.002 1.3
    12.3 0.01 2.1
    DAST晶体bεEL=2.81
    Ω/2π εSTj γj
    1.1 0.27 0.31
    1.3 0.43 0.84
    1.6 0.10 0.20
    2.2 0.05 1.3
    3 0.12 1.6
    5.2 0.03 1.1
    7.2 0.02 3.4
    9.6 0.02 1.7
    11.7 0.004 5.2
    下载: 导出CSV

    表  4  基于洛伦兹模型拟合OH1晶体色散、吸收方程参数[42]

    Table  4.   Fitting parameters of OH1 dispersion and absorption function based on Lorentz oscillator model[42]

    OH1晶体b
    j ωj/2π fj γj
    1 0.368 0.027 0.18
    2 0.595 0.020 0.26
    3 1.467 0.0175 0.97
    4 2.85 0.23 3.06
    OH1晶体c
    j ωj/2π fj γj
    1 0.820 0.015 0.34
    2 1.772 0.146 1.84
    3 2.64 0.127 1.8
    下载: 导出CSV
  • [1] SIEGEL P H. Terahertz technology in biology and medicine[J]. IEEE Transactions on Microwave Theory & Techniques, 2004, 52(10):2438-2447. doi: 10.1109-TMTT.2004.835916/
    [2] SIRTORI C. Applied physics: bridge for the terahertz gap[J]. Nature, 2002, 417(6885):132-133. https://www.ncbi.nlm.nih.gov/pubmed/12000945
    [3] YANG X, ZHAO X, YANG K, et al.. Biomedical applications of terahertz spectroscopy and imaging[J]. Trends in Biotechnology, 2016, 34(10):810-824. doi: 10.1016/j.tibtech.2016.04.008
    [4] TONOUCHI M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2):97-105. doi: 10.1038/nphoton.2007.3
    [5] 刘宏翔, 姚建铨, 王与烨, 等.太赫兹波近场成像综述[J].红外与毫米波学报, 2016, 35(3):300-309, 376. http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201603009

    LIU H X, YAO J Q, WANG Y Y, et al.. Review of THz near-field imaging[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3):300-309, 376.(in Chinese) http://d.old.wanfangdata.com.cn/Periodical/hwyhmb201603009
    [6] KATO M, TRIPATHI S R, MURATE K, et al.. Non-destructive drug inspection in covering materials using a terahertz spectral imaging system with injection-seeded terahertz parametric generation and detection[J]. Optics Express, 2016, 24(6):6425-6432. doi: 10.1364/OE.24.006425
    [7] SUIZU K, MIYAMOTO K, YAMASHITA T, et al.. High-power terahertz-wave generation using DAST crystal and detection using mid-infrared powermeter[J]. Optics Letters, 2007, 32(19):2885-2887. doi: 10.1364/OL.32.002885
    [8] SCHNEIDER A, NEIS M, STILLHART M, et al.. Generation of terahertz pulses through optical rectification in organic DAST crystals:theory and experiment[J]. Journal of the Optical Society of America B, 2006, 23(9):1822-1835. doi: 10.1364/JOSAB.23.001822
    [9] TAKIDA Y, NAWATA K, SUZUKI S, et al.. Nonlinear optical detection of terahertz-wave radiation from resonant tunneling diodes[J]. Optics Express, 2017, 25(5):5389-5396. doi: 10.1364/OE.25.005389
    [10] YAMASHITA M, TAKAHASHI H, OUCHI T, et al.. Ultra-broadband terahertz time-domain ellipsometric spectroscopy utilizing GaP and GaSe emitters and an epitaxial layer transferred photoconductive detector[J]. Applied Physics Letters, 2014, 104(5):051103. doi: 10.1063/1.4862974
    [11] JOOSHESH A, FESHARAKI F, BAHRAMI-YEKTA V, et al.. Plasmon-enhanced LT-GaAs/AlAs heterostructure photoconductive antennas for sub-bandgap terahertz generation[J]. Optics Express, 2017, 25(18):22140-22148. doi: 10.1364/OE.25.022140
    [12] CARNIO B N, GREIG S R, FIRBY C J, et al.. Terahertz electro-optic detection using a <012>-cut chalcopyrite ZnGeP2 crystal[J]. Applied Physics Letters, 2016, 108:261109. doi: 10.1063/1.4955040
    [13] SIM K I, JO Y C, HA T, et al.. Terahertz electrodynamics and superconducting energy gap of NbN[J]. Journal of the Korean Physical Society, 2017, 71(9):571-574. doi: 10.3938/jkps.71.571
    [14] LIU H, BAI W, FENG J T, et al.. The synthesis of large-diameter ZnTe crystal for THz emitting and detection[J]. Journal of Crystal Growth, 2017, 475:115-120. doi: 10.1016/j.jcrysgro.2017.06.009
    [15] MEIER U, BÖSCH M, BOSSHARD C, et al.. Parametric interactions in the organic salt 4-N, N-dimethylamino-4-N-methyl-stilbazolium to sylate at telecommunication wavelengths[J]. Journal of Applied Physics, 1998, 83(7):3486-3489. doi: 10.1063/1.366560
    [16] MORI Y, TAKAHASHI Y, IWAI T, et al.. Slope nucleation method for the growth of high-quality 4-dimethylamino-methyl-4-stilbazolium-tosylate(DAST) Crystals[J]. Japanese Journal of Applied Physics, 2000, 39(10A):L1006-L1008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4be9a97409d57eb46b602cec55665a80
    [17] JAGANNATHAN K, KALAINATHAN S, GNANASEKARAN T, et al.. Growth and characterization of the NLO crystal 4-dimethylamino-N-methyl-4-stilbazolium tosylate(DAST)[J]. Crystal Growth & Design, 2007, 7(5):859-863. http://pubs.acs.org/cgi-bin/abstract.cgi/cgdefu/2007/7/i05/abs/cg0602414.html
    [18] LI Y, WU ZH Y, ZHANG X Y, et al.. Crystal growth and terahertz wave generation of organic NLO crystals:OH1[J]. Journal of Crystal Growth, 2014, 402:53-59. doi: 10.1016/j.jcrysgro.2014.04.033
    [19] ZHONG K, MEI J L, WANG M R, et al.. Compact high-repetition-rate monochromatic terahertz source based on difference frequency generation from a dual-wavelength Nd:YAG laser and DAST crystal[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(1):87-95. doi: 10.1007/s10762-016-0316-3
    [20] LEE S H, JAZBINSEK M, HAURI C P, et al.. Recent progress in acentric core structures for highly efficient nonlinear optical crystals and their supramolecular interactions and terahertz applications[J]. Cryst. Eng. Comm., 2016, 18(38):7180-7203. doi: 10.1039/C6CE00707D
    [21] PAN F, KNÖPFLE G, BOSSHARD C, et al.. Electro-optic properties of the organic salt 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate[J]. Applied Physics Letters, 1996, 69(1):13-15. doi: 10.1063/1.118101
    [22] HUNZIKER C, KWON S J, FIGI H, et al.. Configurationally locked, phenolic polyene organic crystal 2-{3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene}malononitrile:linear and nonlinear optical properties[J]. Journal of the Optical Society of America B, 2008, 25(10):1678-1683. doi: 10.1364/JOSAB.25.001678
    [23] MARDER S R, PERRY J W, SCHAEFER W P. Synthesis of organic salts with large second-order optical nonlinearities[J]. Science, 1989, 245(4918):626-628. doi: 10.1126/science.245.4918.626
    [24] RUIZ B, JAZBINSEK M, GVNTER P. Crystal growth of DAST[J]. Crystal Growth & Design, 2008, 8(11):4173-4184. http://d.old.wanfangdata.com.cn/Periodical/shlgdxxb201805006
    [25] PAN F, WONG M S, BOSSHARD C, et al.. Crystal growth and characterization of the organic salt 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate(DAST)[J]. Advanced Materials, 1996, 8(7):592-595. doi: 10.1002/(ISSN)1521-4095
    [26] JAZBINSEK M, MUTTER L, GVNTER P. Photonic applications with the organic nonlinear optical crystal DAST[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(5):1298-1311. doi: 10.1109/JSTQE.2008.921407
    [27] YANG Z, MUTTER L, STILLHART M, et al.. Large-size bulk and thin-film stilbazolium-salt single crystals for nonlinear optics and THz generation[J]. Advanced Functional Materials, 2007, 17(13):2018-2023. doi: 10.1002/adfm.v17:13
    [28] TANIUCHI T, IKEDA S, MINENO Y, et al.. Terahertz properties of a new organic crystal 4'-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate[J]. Japanese Journal of Applied Physics, 2005, 44(28-32):L932-L934. https://www.researchgate.net/publication/243743789_Terahertz_Properties_of_a_New_Organic_Crystal_4'-Dimethylamino-N-methyl-4-stilbazolium_p-Chlorobenzenesulfonate
    [29] MATSUKAWA T, NOTAKE T, NAWATA K, et al.. Terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium p-bromobenzenesulfonate crystal:effect of halogen substitution in a counter benzenesulfonate of stilbazolium derivatives[J]. Optical Materials, 2014, 36(12):1995-1999. doi: 10.1016/j.optmat.2014.01.012
    [30] BRUNNER F, SCHNEIDER A, GVN TER P. Velocity-matched terahertz generation by optical rectification in an organic nonlinear optical crystal using a Ti:sapphire laser[J]. Applied Physics Letters, 2009, 94(6):061119. doi: 10.1063/1.3080214
    [31] MATSUKAWA T, TAKAHASHI Y, MIYABARA R, et al.. Development of DAST-derivative crystals for terahertz waves generation[J]. Journal of Crystal Growth, 2009, 311(3):568-571. doi: 10.1016/j.jcrysgro.2008.09.080
    [32] VIJAY R J, MELIKECHI N, THOMAS T, et al.. Growth, structural, optical and thermal properties of potential THz material:N, N-dimethylamino-N'-methylstilbazolium 4-styrenesulphonate[J]. Journal of Crystal Growth, 2012, 338(1):170-176. doi: 10.1016/j.jcrysgro.2011.10.045
    [33] RUIZ B, YANG ZH, GRAMLICH V, et al.. Synthesis and crystal structure of a new stilbazolium salt with large second-order optical nonlinearity[J]. Journal of Materials Chemistry, 2006, 16(27):2839-2842. doi: 10.1039/B603049A
    [34] LEE S H, KOO M J, LEE K H, et al.. Quinolinium-based organic electro-optic crystals:crystal characteristics in solvent mixtures and optical properties in the terahertz range[J]. Materials Chemistry and Physics, 2016, 169:62-70. doi: 10.1016/j.matchemphys.2015.11.028
    [35] JEONG J H, KANG B J, KIM J S, et al.. High-power broadband organic THz generator[J]. Scientific Report, 2013, 3:3200. doi: 10.1038/srep03200
    [36] LEE S H, LU J, LEE S J, et al.. Benzothiazolium single crystals:a new class of nonlinear optical crystals with efficient THz wave generation[J]. Advanced Materials, 2017, 29(30):1701748. doi: 10.1002/adma.201701748
    [37] KANG B J, BAEK I H, JEONG J H, et al.. Characteristics of efficient few-cycle terahertz radiation generated in as-grown nonlinear organic single crystals[J]. Current Applied Physics, 2014, 14(3):403-406. doi: 10.1016/j.cap.2013.12.023
    [38] KANG B J, BAEK I H, LEE S H, et al.. Highly nonlinear organic crystal OHQ-T for efficient ultra-broadband terahertz wave generation beyond 10 THz[J]. Optics Express, 2016, 24(10):11054-11061. doi: 10.1364/OE.24.011054
    [39] BHARATH D, KALAINATHAN S. Dielectric, optical and mechanical studies of phenolic polyene OH1 organic electrooptic crystal[J]. Optics & Laser Technology, 2014, 63:90-97. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=096e23bce23be3e8a6920ea35e881345
    [40] LEMKE R. Solvatochromie von 80 mμ in verschiedenen Alkoholen bei Arylidenisophoron-Abkömmlingen[J]. Chemische Berichte, 1970, 103(6):1894-1899. doi: 10.1002/(ISSN)1099-0682
    [41] KOLEV T, GLAVCHEVA Z, YANCHEVA D, et al.. 2-{3-[2-(4-hydroxyphenyl)vinyl]-5, 5-dimethylcyclohex-2-en-1-ylidene}malononitrile[J]. Acta Crystallographica, 2001, E57(6):o561-o562..
    [42] BRUNNER F D J, KWON O P, KWON S J, et al.. Hydrogen-bonded organic nonlinear optical crystal for high-efficiency terahertz generation and detection[J]. Optics Express, 2008, 16(21):16496-16508. doi: 10.1364/OE.16.016496
    [43] HASHIMOTO H, OKADA Y, FUJIMURA H, et al.. Second-harmonic generation from single crystals of N-substituted 4-Nitroanilines[J]. Japanese Journal of Applied Physics, 1997, 36(11):6754-6760. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9077354
    [44] PIELA K, TUROWSKA-TYRK I, DROZD M, et al.. Polymorphism and cold crystallization in optically nonlinear N-benzyl-2-methyl-4-nitroaniline crystal studied by X-ray diffraction, calorimetry and raman spectroscopy[J]. Journal of Molecular Structure, 2011, 991(1-3):42-49. doi: 10.1016/j.molstruc.2011.01.066
    [45] MIYAMOTO K, MINAMIDE H, FUJIWARA M, et al.. Widely tunable terahertz-wave generation using an N-benzyl-2-methyl-4-nitroaniline crystal[J]. Optics Letters, 2008, 33(3):252-254. doi: 10.1364/OL.33.000252
    [46] ZHANG X C, MA X F, JIN Y, et al.. Terahertz optical rectification from a nonlinear organic crystal[J]. Applied Physics Letters, 1992, 61(26):3080-3082. doi: 10.1063/1.107968
    [47] KAWASE K, MIZUNO M, SOHMA S, et al.. Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser[J]. Optics Letters, 1999, 24(15):1065-1067. doi: 10.1364/OL.24.001065
    [48] WALTHER M, JENSBY K, KEIDING S R, et al.. Far-infrared properties of DAST[J]. Optics Letters, 2000, 25(12):911-913. doi: 10.1364/OL.25.000911
    [49] KAWASE K, HATANAKA T, TAKAHASHI H, et al.. Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation of periodically poled lithium niobate[J]. Optics Letters, 2000, 25(23):1714-1716. doi: 10.1364/OL.25.001714
    [50] SCHNEIDER A, BIAGGIOB I, GVNTER P. Optimized generation of THz pulses via optical rectification in the organic salt DAST[J]. Optics Communications, 2003, 224(4-6):337 341. doi: 10.1016/j.optcom.2003.07.013
    [51] TANIUCHI T, OKADA S, NAKANISHI H. Widely tunable terahertz-wave generation in an organic crystal and its spectroscopic application[J]. Journal of Applied Physics, 2004, 95(11):5984-5988. doi: 10.1063/1.1713045
    [52] ITO H, SUIZU K, YAMASHITA T, et al.. Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal[J]. Japanese Journal of Applied Physics, 2007, 46(11):7321-7324. doi: 10.1143/JJAP.46.7321
    [53] SHIBUYA T, AKIBA T, SUIZU K, et al.. Terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal under intra-cavity conditions[J]. Applied Physics Express, 2008, 1(4):042002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=72afc8869ba914f312a28033328049ad
    [54] SCHNEIDER A, STILLHART M, GVNTER P. High efficiency generation and detection of terahertz pulses using laser pulses at telecommunication wavelengths[J]. Optics Express, 2006, 14(12):5376-5384. doi: 10.1364/OE.14.005376
    [55] LIU J J, MERKTA F. Generation of tunable Fourier-transform-limited terahertz pulses in 4-N, N-dimethylamino-4'-N'-methyl stilbazolium tosylate crystals[J]. Applied Physics Letters, 2008, 93(13):131105. doi: 10.1063/1.2977490
    [56] CUNNINGHAM P D, HAYDEN L M. Optical properties of DAST in the THz range[J]. Optics Express, 2010, 18(23):23620-23625. doi: 10.1364/OE.18.023620
    [57] SUIZU K, SHIBUYA T, UCHIDA H, et al.. Prism-coupled Cherenkov phase-matched terahertz wave generation using a DAST crystal[J]. Optics Express, 2010, 18(4):3338-3344. doi: 10.1364/OE.18.003338
    [58] UCHIDA H, OOTA K, MINAMI T, et al.. Generation of single-cycle terahertz pulse using Cherenkov phase matching with 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate crystal[J]. Applied Physics Express, 2017, 10(6):062601. doi: 10.7567/APEX.10.062601
    [59] KATAYAMA I, AKAI R, BITO M, et al.. Ultrabroad band terahertz generation using 4-N, N-dimethylamino-4'-N'-methyl-stilbazolium tosylate single crystals[J]. Applied Physics Letters, 2010, 97(2):021105. doi: 10.1063/1.3463452
    [60] HAURI C P, RUCHERT C, VICARIO C, et al.. Strong-field single-cycle THz pulses generated in an organic crysta[J]. Applied Physics Letters, 2011, 99(16):161116. doi: 10.1063/1.3655331
    [61] TANG M, MINAMIDE H, WANG Y Y, et al.. Tunable terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser[J]. Optics Express, 2011, 19(2):779-786. doi: 10.1364/OE.19.000779
    [62] NAWATA K, ABE T, MIYAKE Y, et al.. Efficient terahertz-wave generation using a 4-dimethylamino-N-methyl-4-stilbazolium tosylate pumped by a dual-wavelength neodymium-doped yttrium aluminum garnet laser[J]. Applied Physics Express, 2012, 5(11):112401. doi: 10.1143/APEX.5.112401
    [63] DOLASINSKI B, POWERS P E, HAUS J W, et al.. Tunable narrow band difference frequency THz wave generation in DAST via dual seed PPLN OPG[J]. Optics Express, 2015, 23(3):3669-3680. doi: 10.1364/OE.23.003669
    [64] TOKIZANE Y, NAWATA K, HAN ZH L, et al.. Tunable terahertz waves from 4-dimethylamino-N'-methyl-4'-stibazolium tosylate pumped with dual-wavelength injection-seeded optical parametric generation[J]. Applied Physics Express, 2017, 10(2):022101. doi: 10.7567/APEX.10.022101
    [65] MONOSZLAI B, VICARIO C, JAZBINSEK M, et al.. High-energy terahertz pulses from organic crystals:DAST and DSTMS pumped at Ti:sapphire wavelength[J]. Optics Letters, 2013, 38(23):5106-5109. doi: 10.1364/OL.38.005106
    [66] TENG B, WANG SH H, FENG K, et al.. Crystal growth, quality characterization and THz properties of DAST crystals[J]. Crystal Research & Technology, 2014, 49(12):943-947. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ce96fa341af6417043a0c69cd023a8a9
    [67] MATSUKAWA T, MINENO Y, ODANI T, et al.. Synthesis and terahertz-wave generation of mixed crystals composed of 1-methyl-4 -{2-[4-(dimethylamino)- phenyl]ethenyl} pyridinium p-toluenesulfonate and p-chlorobenzenes-Ulfonate[J]. Journal of Crystal Growth, 2007, 299(2):344-348. doi: 10.1016/j.jcrysgro.2006.11.303
    [68] MATSUKAWA T, YOSHIMURA M, TAKAHASHI Y, et al.. Bulk crystal growth of stilbazolium derivatives for terahertz waves generation[J]. Japanese Journal of Applied Physics, 2010, 49(7R):075502. https://www.researchgate.net/publication/243749745_Bulk_Crystal_Growth_of_Stilbazolium_Derivatives_for_Terahertz_Waves_Generation?ev=auth_pub
    [69] BRAHADEESWARAN S, TAKAHASHI Y, YOSHIMURA M, et al.. Growth of ultrathin and highly efficient organic nonlinear optical crystal 4'-dimethylamino-N-methyl-4-stilbazolium p-chlorobenzenesulfonate for enhanced terahertz efficiency at higher frequencies[J]. Crystal Growth & Design, 2013, 13(2):415-421. https://www.researchgate.net/publication/263960327_Growth_of_Ultrathin_and_Highly_Efficient_Organic_Nonlinear_Optical_Crystal_4'-Dimethylamino-N-methyl-4-Stilbazolium_p-Chlorobenzenesulfonate_for_Enhanced_Terahertz_Efficiency_at_Higher_Frequencies
    [70] MUTTER L, BRUNNER F D J, YANG Z, et al.. Linear and nonlinear optical properties of the organic crystal DSTMS[J]. Journal of the Optical Society of America B, 2007, 24(9):2556-2561. doi: 10.1364/JOSAB.24.002556
    [71] STILLHART M, SCHNEIDER A, GVNTER P. Optical properties of 4-N, N-dimethylamino-4-N-methyl-stilbazolium 2, 4, 6-trimethylbenzenesulfonate crystals at terahertz frequencies[J]. Journal of the Optical Society of America B, 2008, 25(11):1914-1919. doi: 10.1364/JOSAB.25.001914
    [72] RUCHERT C, VICARIO C, HAURI C P. Spatiotemporal focusing dynamics of intense supercontinuum THz pulses[J]. Physical Review Letters, 2013, 110(12):123902. doi: 10.1103/PhysRevLett.110.123902
    [73] VICARIO C, MONOSZLAI B, HAURI C P. GV/m single-cycle terahertz fields from a laser-driven large-size partitioned organic crystal[J]. Physical Review Letters, 2014, 112(21):213901. doi: 10.1103/PhysRevLett.112.213901
    [74] LIU P X, XU D G, LI Y, et al.. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal DSTMS[J]. Europhysics Letters, 2014, 106(6):60001. doi: 10.1209/0295-5075/106/60001
    [75] SHALABY M, HAURI C P. Demonstration of a low-frequency three-dimensional terahertz bullet with extreme brightness[J]. Nature Communications, 2015, 6:5976. doi: 10.1038/ncomms6976
    [76] YANG S G, WANG X J, WU ZH H, et al.. Narrow linewidth terahertz generation engined by all-fiber parametric optical source[J]. IEEE Photonics Journal, 2015, 7(6):1300407. https://www.researchgate.net/publication/283244897_Narrow_Linewidth_Terahertz_Generation_Engined_by_All-Fiber_Parametric_Optical_Source?ev=auth_pub
    [77] SOMMA C, FOLPINI G, GUPTA J, et al.. Ultra-broadband terahertz pulses generated in the organic crystal DSTMS[J]. Optics Letters, 2015, 40(14):3404-3407. doi: 10.1364/OL.40.003404
    [78] ZHANG Y, ZHANG X L, LI SH X, et al.. Broadband THz-TDS system based on DSTMS emitter and LTG InGaAs/InAlAs photoconductive antenna detector[J]. Scientific Reports, 2016, 6:26949. doi: 10.1038/srep26949
    [79] LIU B, BROMBERGER H, CARTELLA A, et al.. Generation of narrowband, high-intensity, carrier-envelope phase-stable pulses tunable between 4 and 18 THz[J]. Optics Letters, 2017, 42(1):129-131. doi: 10.1364/OL.42.000129
    [80] KUROYANAHGI K, FUJIWARA M, HASHIMOTO H, et al.. All organic terahertz electromagnetic wave emission and detection using highly purified N-benzyl-2-methyl-4-nitroaniline crystals[J]. Japanese Journal of Applied Physics, 2006, 45(5A):4068-4073. doi: 10.1143/JJAP.45.4068
    [81] KUROYANAHGI K, FUJIWARA M, HASHIMOTO H, et al.. Determination of refractive indices and absorption coefficients of highly purified N-benzyl-2-methyl-4-nitroaniline crystal in terahertz frequency regime[J]. Japanese Journal of Applied Physics, 2006, 45(29):L761-L764. doi: 10.1143/JJAP.45.L761
    [82] MIYAMOTO K, OHNO S, FUJIWARA M, et al.. Optimized terahertz-wave generation using BNA-DFG[J]. Optics Express, 2009, 17(17):14832-14838. doi: 10.1364/OE.17.014832
    [83] NOTAKE T, NAWATA K, KAWAMATA H, et al.. Development of an ultra-widely tunable DFG-THz source with switching between organic nonlinear crystals pumped with a dualwavelength BBO optical parametric oscillator[J]. Optics Express, 2012, 20(23):25850-25857. doi: 10.1364/OE.20.025850
    [84] NOTAKE T, NAWATA K, KAWAMATA H, et al.. Solution growth of high-quality organic N-benzyl-2-methyl-4-nitroaniline crystal for ultra-wideband tunable DFG-THz source[J]. Optical Materials Express, 2012, 2(2):119-125. doi: 10.1364/OME.2.000119
    [85] KAMADA K, TAKIDA Y, MINAMIDE H, et al.. Growth of N-benzyl-2-methyl-4-nitroaniline(BNA) single crystal fibers by micro-pulling down method[J]. Journal of Crystal Growth, 2016, 452:162-165. doi: 10.1016/j.jcrysgro.2016.04.041
    [86] SHALABY M, VICARIO C, THIRUPUGALMANI K, et al.. Intense THz source based on BNA organic crystal pumped at TI:sapphire wavelength[J]. Optics Letters, 2016, 41(8):1777-1780. doi: 10.1364/OL.41.001777
    [87] KWON O P, KWON S J, JAZBINSEK M, et al.. Organic phenolic configurationally locked polyene single crystals for electro-optic and terahertz wave applications[J]. Advanced Functional Materials, 2008, 18(20):3242-3250. doi: 10.1002/adfm.v18:20
    [88] RUCHERT C, VICARIO C, HAURI C P. Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1[J]. Optics Letters, 2012, 37(5):899-901. doi: 10.1364/OL.37.000899
    [89] UCHIDA H, TRIPATHI S R, SUIZU K, et al.. Widely tunable broadband terahertz radiation generation using a configurationally locked polyene 2-[3-(4-hydroxystyryl)-5, 5-dimethylcyclohex-2-enylidene] malononitrile crystal via difference frequency generation[J]. Applied Physics B, 2013, 111(3):489-493. doi: 10.1007/s00340-013-5362-0
    [90] STEPANOV A G, RUCHERT C, LEVALLOIS J, et al.. Generation of broadband THz pulses in organic crystal OH1 at room temperature and 10 K[J]. Optical Materials Express, 2014, 4(4):870-875. doi: 10.1364/OME.4.000870
    [91] MAJKIC' A, ZGONIK M, PETELIN A, et al.. Terahertz source at 9.4 THz based on a dual-wavelength infrared laser and quasi-phase matching in organic crystals OH1[J]. Applied Physics Letters, 2014, 105(14):141115. doi: 10.1063/1.4897639
    [92] VICARIO C, JAZBINSEK M, OVCHINNIKOV A V, et al.. High efficiency THz generation in DSTMS, DAST and OH1 pumped by Cr:forsterite laser[J]. Optics Express, 2015, 23(4):4573-4580. doi: 10.1364/OE.23.004573
    [93] KIM J, LEE S H, LEE S C, et al.. Terahertz phonon modes of highly efficient electro-optic phenyltriene OH1 crystals[J]. Journal of Physical Chemistry C, 2016, 120(42):24360-24369. doi: 10.1021/acs.jpcc.6b07979
    [94] LIU P X, ZHANG X Y, YAN CH, et al.. Widely tunable and monochromatic terahertz difference frequency generation with organic crystal 2-(3-(4-hydroxystyryl)-5, 5-dime-thylcyclohex-2-enylidene) malononitrile[J]. Applied Physics Letters, 2016, 108(1):011104. doi: 10.1063/1.4939456
    [95] ZHANG X Y, JIANG X X, LIU P X, et al.. Molecular design on isoxazolone-based derivatives with large second-order harmonic generation effect and terahertz wave generation[J]. Cryst.Eng.Comm., 2016, 18(20):3667-3673. doi: 10.1039/C6CE00398B
    [96] KIM P J, JEONG J H, JAZBINSEK M, et al.. Highly efficient organic THz generator pumped at near-infrared:quinolinium single crystals[J]. Advanced Functional Materials, 2012, 22(1):200-209. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0225693569/
    [97] BRUNNER F D J, LEE S H, KWON O P, et al.. THz generation by optical rectification of near-infrared laser pulses in the organic nonlinear optical crystal HMQ-TMS[J]. Optical Materials Express, 2014, 4(8):1586-1592. doi: 10.1364/OME.4.001586
    [98] VICARIO C, MONOSZLAI B, JAZBINSEK M, et al.. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap[J]. Scientific Reports, 2015, 5:14394. doi: 10.1038/srep14394
    [99] LU J, HWANG H Y, LI X, et al.. Tunable multi-cycle THz generation in organic crystal HMQ-TMS[J]. Optics Express, 2015, 23(17):22723-22729. doi: 10.1364/OE.23.022723
    [100] LEE S H, LEE S J, JAZBINSEK M, et al.. Electro-optic crystals grown in confined geometry with optimal crystal characteristics for THz photonic applications[J]. Cryst.Eng.Comm., 2016, 18(38):7311-7318. doi: 10.1039/C6CE00958A
    [101] HE Y X, WANG Y Y, XU D G, et al.. High-energy and ultra-wideband tunable terahertz source with DAST crystal via diflerence frequency generation[J]. Applied Physics B, 2018, 124(1):16. doi: 10.1007/s00340-017-6887-4
  • 加载中
图(20) / 表(4)
计量
  • 文章访问数:  4582
  • HTML全文浏览量:  2243
  • PDF下载量:  299
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-13
  • 修回日期:  2018-12-10
  • 刊出日期:  2019-06-01

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!